

SV100 Epoxy Hardener Part B On-Crete Australia Pty Ltd

Chemwatch Hazard Alert Code: 3

Issue Date: **22/04/2021**Print Date: **22/04/2021**L.GHS.AUS.EN

Version No: **4.8.1.1**

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	SV100 Epoxy Hardener Part B
Chemical Name	Not Applicable
Synonyms	Not Available
Proper shipping name	AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Part B of epoxy resin concrete coating system

Details of the supplier of the safety data sheet

Registered company name	On-Crete Australia Pty Ltd	On-Crete Australia Pty Ltd	
Address	4/489 Scottsdale Drive Queensland 4227 Australia	4/489 Scottsdale Drive Queensland 4227 Australia	
Telephone	+61 7 5593 6884	+61 7 5593 6884	
Fax	Not Available	Not Available	
Website	www.on-crete.com.au	www.on-crete.com.au	
Email	sales@on-crete.com.au	sales@on-crete.com.au	

Emergency telephone number

Association / Organisation	On-Crete Australia Pty Ltd	On-Crete Australia Pty Ltd	
Emergency telephone numbers 1300 292 504		1300 292 504	
Other emergency telephone numbers	+613 6121 9073	+613 6121 9073	

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

ChemWatch Hazard Ratings

		Min	Max	
Flammability	0		į	
Toxicity	2		i	
Body Contact	3		<u> </u>	0 = Minimum 1 = Low
Reactivity	0			2 = Moderate
Chronic	2			3 = High 4 = Extreme

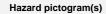
Poisons Schedule

Not Applicable

Version No: **4.8.1.1** Page **2** of **24** Issue Date: **22/04/2021**

SV100 Epoxy Hardener Part B

Print Date: 22/04/2021


Classification [1]

Skin Corrosion/Irritation Category 1B, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Acute Toxicity (Dermal) Category 4, Corrosive to Metals Category 1, Serious Eye Damage/Eye Irritation Category 1, Acute Toxicity (Oral) Category 4, Skin Sensitizer Category 1, Chronic Aquatic Hazard Category 3

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Signal word

Danger

Hazard statement(s)

H314	Causes severe skin burns and eye damage.	
H336	ay cause drowsiness or dizziness.	
H312	Harmful in contact with skin.	
H290	May be corrosive to metals.	
H302	Harmful if swallowed.	
H317	May cause an allergic skin reaction.	
H412	Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P260	Do not breathe mist/vapours/spray.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection/hearing protection.
P234	Keep only in original packaging.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.			
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].			
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.			
P310	Immediately call a POISON CENTER/doctor/physician/first aider.			
P302+P352	IF ON SKIN: Wash with plenty of water and soap.			
P363	Wash contaminated clothing before reuse.			
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			
P390	Absorb spillage to prevent material damage.			
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Version No: 4.8.1.1 Page 3 of 24 Issue Date: 22/04/2021

SV100 Epoxy Hardener Part B

Print Date: 22/04/2021

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name	
2855-13-2	30-60	isophorone diamine	
100-51-6	30-60	benzyl alcohol	
25620-58-0	<10	trimethylhexamethylene diamine	
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available			

SECTION 4 First aid measures

Description of first aid me	easures
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. For amines: If liquid amines come in contact with the eyes, irrigate immediately and continuously with low pressure flowing water, preferably from an eye wash fountain, for 15 to 30 minutes. For more effective flushing of the eyes, use the fingers to spread apart and hold open the eyelids. The eyes should then be "rolled" or moved in all directions. Seek immediate medical attention, preferably from an ophthalmologist.
Skin Contact	If skin or hair contact occurs: Immediately flush body and clothes with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor. For amines: In case of major exposure to liquid amine, promptly remove any contaminated clothing, including rings, watches, and shoe, preferably under a safety shower. Wash skin for 15 to 30 minutes with plenty of water and soap. Call a physician immediately. Remove and dry-clean or launder clothing soaked or soiled with this material before reuse. Dry cleaning of contaminated clothing may be more effective than normal laundering. Inform individuals responsible for cleaning of potential hazards associated with handling contaminated clothing. Discard contaminated leather articles such as shoes, belts, and watchbands. Note to Physician: Treat any skin burns as thermal burns. After decontamination, consider the use of cold packs and topical antibiotics.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719) For amines:

▶ All employees working in areas where contact with amine catalysts is possible should be thoroughly trained in the

▶ Promptly move the affected person away from the contaminated area to an area of fresh air.

▶ If breathing is difficult, oxygen may be administered by a qualified person.

Experience has demonstrated that prompt administration of such aid can minimize the effects of accidental exposure.

administration of appropriate first aid procedures.

▶ Keep the affected person calm and warm, but not hot.

 Version No: 4.8.1.1
 Page 4 of 24
 Issue Date: 22/04/2021

 Print Date: 22/04/2021
 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

Ingestion

Indication of any immediate medical attention and special treatment needed

Clinical experience of benzyl alcohol poisoning is generally confined to premature neonates in receipt of preserved intravenous salines.

Metabolic acidosis, bradycardia, skin breakdown, hypotonia, hepatorenal failure, hypotension and cardiovascular collapse are characteristic.

whether to induce vomiting should be made by an attending physician.

- ▶ High urine benzoate and hippuric acid as well as elevated serum benzoic acid levels are found.
- ▶ The so-called "gasping syndrome describes the progressive neurological deterioration of poisoned neonates.
- Management is essentially supportive.

For acute or short-term repeated exposures to highly alkaline materials:

- ▶ Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- ▶ The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- Neutralising agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- ▶ If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

Injury should be irrigated for 20-30 minutes.

Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

For amines:

- Certain amines may cause injury to the respiratory tract and lungs if aspirated. Also, such products may cause tissue destruction leading to stricture. If lavage is performed, endotracheal and/or esophagoscopic control is suggested.
- No specific antidote is known.
- Care should be supportive and treatment based on the judgment of the physician in response to the reaction of the patient.

Laboratory animal studies have shown that a few amines are suspected of causing depletion of certain white blood cells and their precursors in lymphoid tissue. These effects may be due to an immunosuppressive mechanism.

Some persons with hyperreactive airways (e.g., asthmatic persons) may experience wheezing attacks (bronchospasm) when exposed to airway irritants. Lung injury may result following a single massive overexposure to high vapour concentrations or multiple exposures to lower concentrations of any pulmonary irritant material.

Health effects of amines, such as skin irritation and transient corneal edema ("blue haze," "halo effect," "glaucopsia"), are best prevented by means of formal worker education, industrial hygiene monitoring, and exposure control methods. Persons who are highly sensitive to the triggering effect of non-specific irritants should not be assigned to jobs in which such agents are used, handled, or manufactured.

Medical surveillance programs should consist of a pre-placement evaluation to determine if workers or applicants have any impairments (e.g., hyperreactive airways or bronchial asthma) that would limit their fitness for work in jobs with potential for exposure to amines. A clinical baseline can be established at the time of this evaluation

Periodic medical evaluations can have significant value in the early detection of disease and in providing an opportunity for health counseling.

Medical personnel conducting medical surveillance of individuals potentially exposed to polyurethane amine catalysts should consider the following:

- ► Health history, with emphasis on the respiratory system and history of infections
- Physical examination, with emphasis on the respiratory system and the lymphoreticular organs (lymph nodes, spleen, etc.)
- Lung function tests, pre- and post-bronchodilator if indicated
- ► Total and differential white blood cell count
- ► Serum protein electrophoresis

Persons who are concurrently exposed to isocyanates also should be kept under medical surveillance.

Pre-existing medical conditions generally aggravated by exposure include skin disorders and allergies, chronic respiratory disease (e.g. bronchitis, asthma,

 Version No: 4.8.1.1
 Page 5 of 24
 Issue Date: 22/04/2021

 Print Date: 22/04/2021
 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

emphysema), liver disorders, kidney disease, and eye disease.

Broadly speaking, exposure to amines, as characterised by amine catalysts, may cause effects similar to those caused by exposure to ammonia. As such, amines should be considered potentially injurious to any tissue that is directly contacted.

Inhalation of aerosol mists or vapors, especially of heated product, can result in chemical pneumonitis, pulmonary edema, laryngeal edema, and delayed scarring of the airway or other affected organs. There is no specific treatment.

Clinical management is based upon supportive treatment, similar to that for thermal burns.

Persons with major skin contact should be maintained under medical observation for at least 24 hours due to the possibility of delayed reactions.

Polyurethene Amine Catalysts: Guidelines for Safe Handling and Disposal Technical Bulletin June 2000

Alliance for Polyurethanes Industry

SECTION 5 Firefighting measures

Extinguishing media

- ▶ Eoom
- ▶ Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

Fire Fighting

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may

Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- ► Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

For amines:

- For firefighting, cleaning up large spills, and other emergency operations, workers must wear a self-contained breathing apparatus with full face-piece, operated in a pressure-demand mode.
- Airline and air purifying respirators should not be worn for firefighting or other emergency or upset conditions.
- Respirators should be used in conjunction with a respiratory protection program, which would include suitable fit testing and medical evaluation of the user.

► Combustible.

- Slight fire hazard when exposed to heat or flame.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).
- ► May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Fire/Explosion Hazard

Combustion products include:

carbon dioxide (CO2) aldehydes

nitrogen oxides (NOx)

other pyrolysis products typical of burning organic material.

May emit corrosive fumes.

WARNING: Long standing in contact with air and light may result in the formation

of potentially explosive peroxides.

HAZCHEM

2X

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Version No: **4.8.1.1** Page **6** of **24** Issue Date: **22/04/2021**

SV100 Epoxy Hardener Part B

Print Date: 22/04/2021

Environmental hazard - contain spillage.

- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.

Slippery when spilt.

- ► Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- ▶ Contain and absorb spill with sand, earth, inert material or vermiculite.
- ▶ Wipe up.
- Place in a suitable, labelled container for waste disposal.

Minor Spills for amines:

- If possible (i.e., without risk of contact or exposure), stop the leak.
- ▶ Contain the spilled material by diking, then neutralize.
- Next, absorb the neutralized product with clay, sawdust, vermiculite, or other inert absorbent and shovel into containers.
- ▶ Store the containers outdoors.
- Brooms and mops should be disposed of, along with any remaining absorbent, in accordance with all applicable federal, state, and local regulations and requirements.
- Decontamination of floors and other hard surfaces after the spilled material has been removed may be accomplished by using a 5% solution of acetic acid, followed by very hot water
- Dispose of the material in full accordance with all federal, state, and local laws and regulations governing the disposal of chemical wastes.
- ▶ Waste materials from an amine catalyst spill or leak may be "hazardous wastes" that are regulated under various laws.

Environmental hazard - contain spillage.

Chemical Class: amines, alkyl

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R,DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT,
treated wood fibre - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	4	throw	skiploader	DGC, RT

Major Spills

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

NOTE:

Organic absorbents have been known to ignite when contaminated with amines in closed containers. Certain cellulosic materials used for spill cleanup such as wood chips or sawdust have shown reactivity with ethyleneamines and should be avoided.

Slippery when spilt.

- ▶ Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by any means available, spillage from entering drains or water course.

Version No: **4.8.1.1** Page **7** of **24** Issue Date: **22/04/2021**

SV100 Epoxy Hardener Part B

Print Date: 22/04/2021

- ► Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- ▶ Neutralise/decontaminate residue (see Section 13 for specific agent).
- ▶ Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- · After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- ▶ If contamination of drains or waterways occurs, advise emergency services.

For amines:

- First remove all ignition sources from the spill area.
- Have firefighting equipment nearby, and have firefighting personnel fully trained in the proper use of the equipment and in the procedures used in fighting a chemical fire.
- Spills and leaks of polyurethane amine catalysts should be contained by diking, if necessary, and cleaned up only by properly trained and equipped personnel. All others should promptly leave the contaminated area and stay upwind.
- Protective equipment for cleanup crews should include appropriate respiratory protective devices and impervious clothing, footwear, and gloves.
- All work areas should be equipped with safety showers and eyewash fountains in good working order.
- Any material spilled or splashed onto the skin should be quickly washed off.
- Spills or releases may need to be reported to federal, state, and local authorities. This reporting contingency should be a part of a site's emergency response plan.
- Protective equipment should be used during emergency situations whenever there is a likelihood of exposure to liquid amines or to excessive concentrations of amine vapor. "Emergency" may be defined as any occurrence, such as, but not limited to, equipment failure, rupture of containers, or failure of control equipment that results in an uncontrolled release of amine liquid or vapor.
- ► Emergency protective equipment should include:
- Self-contained breathing apparatus, with full face-piece, operated in positive pressure or pressure-demand mode.
- Rubber gloves
- Long-sleeve coveralls or impervious full body suit
- Head protection, such as a hood, made of material(s) providing protection against amine catalysts
- Firefighting personnel and other on-site Emergency Responders should be fully trained in Chemical Emergency Procedures. However back-up from local authorities should be sought

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- ► Avoid contact with moisture.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- ▶ Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

- ► Store in original containers.
- Keep containers securely sealed.
- ► Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- ▶ Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- ► DO NOT store near acids, or oxidising agents
- No smoking, naked lights, heat or ignition sources.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ DO NOT use aluminium or galvanised containers
- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.

Issue Date: 22/04/2021 Version No: 4.8.1.1 Page 8 of 24 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- ▶ Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging:
- ▶ Cans with friction closures and
- ► low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Benzyl alcohol:

- ▶ may froth in contact with water
- slowly oxidises in air, oxygen forming benzaldehyde
- ▶ is incompatible with mineral acids, caustics, aliphatic amines, isocyanates
- reacts violently with strong oxidisers, and explosively with sulfuric acid at elevated temperatures
- corrodes aluminium at high temperatures
- ▶ is incompatible with aluminum, iron, steel
- ▶ attacks some nonfluorinated plastics; may attack, extract and dissolve polypropylene

Benzyl alcohol contaminated with 1.4% hydrogen bromide and 1.2% of dissolved iron(II) polymerises exothermically above 100 deg. C.

Storage incompatibility

- PReacts with mild steel, galvanised steel / zinc producing hydrogen gas which may form an explosive mixture with air.
- Avoid contact with copper, aluminium and their alloys.
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid reaction with oxidising agents

- Must not be stored together
- May be stored together with specific preventions
- May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
benzyl alcohol	30 ppm	52 ppm	740 ppm

Ingredient	Original IDLH	Revised IDLH
isophorone diamine	Not Available	Not Available
benzyl alcohol	Not Available	Not Available
trimethylhexamethylene diamine	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
Notes:	Occupational exposure banding is a process of assigning chemical	als into specific categories or bands based on a chemical's
	notency and the adverse health outcomes associated with exposi-	ire. The output of this process is an occupational exposure.

band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Version No: **4.8.1.1** Page **9** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
isophorone diamine	D	> 0.1 to ≤ 1 ppm
benzyl alcohol	E	≤ 0.1 ppm
trimethylhexamethylene diamine	Е	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- ▶ cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

Fragrance substance with is an established contact allergen in humans.

Scientific Committee on Consumer Safety SCCS OPINION on Fragrance allergens in cosmetic products 2012

IFRA Restricted Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity

Version No: **4.8.1.1** Page **10** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

3: Intermittent, low production.
 4: Large hood or large air mass in motion
 3: High production, heavy use
 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Personal protection

r oroonar protootion

- Safety glasses with unperforated side shields may be used where continuous eye protection is desirable, as in laboratories; spectacles are not sufficient where complete eye protection is needed such as when handling bulk-quantities, where there is a danger of splashing, or if the material may be under pressure.
- Chemical goggles.whenever there is a danger of the material coming in contact with the eyes; goggles must be properly fitted
- Full face shield (20 cm, 8 in minimum) may be required for supplementary but never for primary protection of eyes; these
 afford face protection.
- Alternatively a gas mask may replace splash goggles and face shields.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

For amines: SPECIAL PRECAUTION:

- Because amines are alkaline materials that can cause rapid and severe tissue damage, wearing of contact lenses while working with amines is strongly discouraged. Wearing such lenses can prolong contact of the eye tissue with the amine, thereby causing more severe damage.
- Appropriate eye protection should be worn whenever amines are handled or whenever there is any possibility of direct contact with liquid products, vapors, or aerosol mists.

CAUTION

- ▶ Ordinary safety glasses or face-shields will not prevent eye irritation from high concentrations of vapour.
- In operations where positive-pressure, air-supplied breathing apparatus is not required, all persons handling liquid amine catalysts or other polyurethane components in open containers should wear chemical workers safety goggles.
- ▶ Eyewash fountains should be installed, and kept in good working order, wherever amines are used.

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterit

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

Hands/feet protection

Version No: **4.8.1.1** Page **11** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

· Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.

· Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Leather wear not recommended: Contaminated leather footwear, watch bands, should be destroyed, i.e. burnt, as they cannot be adequately decontaminated

For amines:

- ▶ Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly.
- Application of a non-perfumed moisturiser is recommended
- Where there is a possibility of exposure to liquid amines skin protection should include: rubber gloves, (neoprene, nitrile, or butyl).
- DO NOT USE latex.

Body protection

See Other protection below

Other protection

- Overalls.
- PVC Apron.
- ▶ PVC protective suit may be required if exposure severe.
- ▶ Eyewash unit
- ▶ Ensure there is ready access to a safety shower.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

SV100 Epoxy Hardener Part B

Material	CPI
BUTYL	A
VITON	A

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AK-AUS / Class1 P2	-
up to 50	1000	-	AK-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	AK-2 P2
up to 100	10000	-	AK-3 P2
100+			Airline**

- * Continuous Flow ** Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
 - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- ▶ The wearer must be warned to leave the contaminated area immediately

Version No: 4.8.1.1 Page **12** of **24** Issue Date: 22/04/2021 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time

Where engineering controls are not feasible and work practices do not reduce airborne amine concentrations below recommended exposure limits, appropriate respiratory protection should be used. In such cases, air-purifying respirators equipped with cartridges designed to protect against amines are recommended.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquid	Relative density (Water= 1)	1.02
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	380
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	519.61
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	>100	Taste	Not Available
Evaporation rate	Not Available BuAC = 1	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	13	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1.2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Version No: **4.8.1.1** Page **13** of **24** Issue Date: **22/04/2021**

SV100 Epoxy Hardener Part B

Print Date: 22/04/2021

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of amine vapours may cause irritation of the mucous membranes of the nose and throat and lung irritation with respiratory distress and cough. Single exposures to near lethal concentrations and repeated exposures to sublethal

concentrations produces tracheitis, bronchitis, pneumonitis and pulmonary oedema. Aliphatic and alicyclic amines are generally well absorbed from the respiratory tract. Systemic effects include headache, nausea, faintness and anxiety. These effects are thought to be transient and are probably related to the pharmacodynamic action of the amines. Histamine release by aliphatic amines may produce bronchoconstriction and wheezing.

Inhalation of epoxy resin amine hardener vapours (including polyamines and amine adducts) may produce bronchospasm and coughing episodes lasting days after cessation of the exposure. Even faint traces of these vapours may trigger an intense reaction in individuals showing "amine asthma". The literature records several instances of systemic intoxications following the

use of amines in epoxy resin systems.

Excessive exposure to the vapours of epoxy amine curing agents may cause both respiratory irritation and central nervous system depression. Signs and symptoms of central nervous system depression, in order of increasing exposure, are headache, dizziness, drowsiness, and incoordination. In short, a single prolonged (measured in hours) or excessive inhalation exposure may cause serious adverse effects, including death.

Inhalation of benzyl alcohol may affect respiration (paralysis of the respiratory center, respiratory depression, gasping respirations), cardiovascular system (hypotension

Acute effects from inhalation of high vapour concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea.

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Ingestion of amine epoxy-curing agents (hardeners) may cause severe abdominal pain, nausea, vomiting or diarrhoea. The vomitus may contain blood and mucous. If death does not occur within 24 hours there may be an improvement in the patients condition for 2-4 days only to be followed by the sudden onset of abdominal pain, board-like abdominal rigidity or hypo-tension; this indicates that delayed gastric or oesophageal corrosive damage has occurred.

Aliphatic and alicyclic amines are generally well absorbed from the gut. Corrosive action may cause tissue damage throughout the gastrointestinal tract. Detoxification is thought to occur in the liver, kidney and intestinal mucosa with the enzymes, monoamine oxidase and diamine oxidase (histaminase) having a significant role.

monoamine oxidase and diamine oxidase (histaminase) having a significant role.

Ingestion of large doses of benzyl alcohol may cause abdominal pain, nausea, vomiting, diarrhea. It may affect behavior/central nervous system and cause headache, somnolence, excitement, dizziness, ataxia, coma, convulsions, and other symptoms of

central nervous system depression.

Exposure to excessive amounts of benzyl alcohol has been associated with toxicity (hypotension, metabolic acidosis), particularly in neonates, and an increased incidence of kernicterus (a neurological condition that occurs in severe jaundice), particularly in small preterm infants. There have been rare reports of deaths, primarily in preterm infants, associated with exposure to excessive amounts of benzyl alcohol. The amount of benzyl alcohol from medications is usually considered negligible compared to that received in flush solutions containing benzyl alcohol. Administration of high dosages of medications containing this preservative

must take into account the total amount of benzyl alcohol administered. The amount of benzyl alcohol at which toxicity may occur

is not known. If the patient requires more than the recommended dosages or other medications containing this preservative, the practitioner must consider the daily metabolic load of benzyl alcohol from these combined sources.

Skin contact with the material may be harmful; systemic effects may result following absorption.

Volatile amine vapours produce primary skin irritation and dermatitis. Direct local contact, with the lower molecular weight liquids,

may produce skin burns. Percutaneous absorption of simple aliphatic amines is known to produce lethal effects often the same as that for oral administration. Cutaneous sensitisation has been recorded chiefly due to ethyleneamines. Histamine release following exposure to many aliphatic amines may result in "triple response" (white vasoconstriction, red flare and wheal) in

Amine epoxy-curing agents (hardeners) may produce primary skin irritation and sensitisation dermatitis in predisposed individuals. Cutaneous reactions include erythema, intolerable itching and severe facial swelling. Blistering, with weeping of serious fluid, and crusting and scaling may also occur.

Virtually all of the liquid amine curing agents can cause sensitisation or allergic skin reactions.

Individuals exhibiting "amine dermatitis" may experience a dramatic reaction upon re-exposure to minute quantities. Highly sensitive persons may even react to cured resins containing trace amounts of unreacted amine hardener. Minute quantities of air-borne amine may precipitate intense dermatological symptoms in sensitive individuals. Prolonged or repeated exposure may produce tissue necrosis.

NOTE: Susceptibility to this sensitisation will vary from person to person. Also, allergic dermatitis may not appear until after several days or weeks of contact. However, once sensitisation has occurred, exposure of the skin to even very small amounts of the material may cause erythema (redness) and oedema (swelling) at the site. Thus, all skin contact with any epoxy curing agent should be avoided.

Open cuts, abraded or irritated skin should not be exposed to this material

Ingestion

Skin Contact

Version No: **4.8.1.1** Page **14** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material can produce chemical burns following direct contact with the skin.

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation.

Vapours of volatile amines cause eye irritation with lachrymation, conjunctivitis and minor transient corneal oedema which results in "halos" around lights (glaucopsia, "blue haze", or "blue-grey haze"). Vision may become misty and halos may appear several hours after workers are exposed to the substance

This effect generally disappears spontaneously within a few hours of the end of exposure, and does not produce physiological after-effects. However oedema of the corneal epithelium, which is primarily responsible for vision disturbances, may take more than one or more days to clear, depending on the severity of exposure. Photophobia and discomfort from the roughness of the corneal surface also may occur after greater exposures.

Although no detriment to the eye occurs as such, glaucopsia predisposes an affected individual to physical accidents and reduces the ability to undertake skilled tasks such as driving a vehicle.

Direct local contact with the liquid may produce eye damage which may be permanent in the case of the lower molecular weight species.

The vapour when concentrated has pronounced eye irritation effects and this gives some warning of high vapour concentrations. If eye irritation occurs seek to reduce exposure with available control measures, or evacuate area.

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers

Chronic

Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyperresponsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Prolonged or repeated exposure to benzyl alcohol may cause allergic contact dermatitis.

Prolonged or repeated ingestion may affect behavior/central nervous system with symptoms similar to acute ingestion. It may also affect the liver, kidneys, cardiovascular system, and metabolism (weight loss).

Animal studies have shown this compound to cause lung, liver, kidney and CNS disorders. Studies in animals have shown evidence of teratogenicity in the chick embryo. The significance of the information for humans is unknown.

Benzyl alcohol showed no evidence of carcinogenic activity in long-term toxicology and carcinogenesis study.

SV100 Epoxy Hardener	TOXICITY	IRRITATION
Part B	Not Available	Not Available
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available
isophorone diamine	Inhalation(Rat) LC50; >=1.07<=5.01 mg/l4h ^[1]	
	Oral(Rat) LD50; 1030 mg/kg ^[2]	
	TOXICITY	IRRITATION
benzyl alcohol	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 0.75 mg open SEVERE
	Inhalation(Rat) LC50; >4.178 mg/L4h ^[1]	Eye: adverse effect observed (irritating) ^[1]
	Oral(Rat) LD50; 1.442 mg/kg ^[2]	Skin (man): 16 mg/48h-mild
		Skin (rabbit):10 mg/24h open-mild

Version No: 4.8.1.1 Page 15 of 24 Issue Date: 22/04/2021 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

	TOXICITY	IRRITATION	
trimethylhexamethylene diamine	Oral(Rat) LD50; 910 mg/kg ^[2]	Eye (rabbit): Corrosive *	
		Skin (rabbit): Corrosive *	
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

ISOPHORONE DIAMINE

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

For benzyl alkyl alcohols:

Unlike benzylic alcohols, the beta-hydroxyl group of the members of this cluster is unlikely to undergo phase II metabolic activation. Instead, the beta-hydroxyl group is expected to contribute to detoxification via oxidation to hydrophilic acid. Despite structural similarity to carcinogenic ethyl benzene, only a marginal concern has been assigned to phenethyl alcohol due to limited mechanistic analogy.

For benzoates:

Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol.

The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds.

Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria, Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers.

Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is

Mutagenicity: All chemicals showed no mutagenic activity in in vitro Ames tests. Various results were obtained with other in

vitro genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity in vivo. While some mixed and/or equivocal in vitro chromosomal/chromatid responses have been observed, no genotoxicity was observed in the in vivo cytogenetic, micronucleus, or other assays. The weight of the evidence of the in vitro and in vivo genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies.

In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL= 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. A member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS) based in part on their self-limiting properties as flavouring substances in food; their rapid absorption. metabolic detoxification, and excretion in humans and other animals, their low level of flavour use, the wide margin of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from chronic and subchronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than the intake as intentionally added flavouring substances. All members of this group are aromatic primary alcohols, aldehydes, carboxylic acids or their corresponding esters or acetals.

BENZYL ALCOHOL

Version No: **4.8.1.1** Page **16** of **24** Issue Date: **22/04/2021**

SV100 Epoxy Hardener Part B

Print Date: **22/04/2021**

The substances in this group:

- contain a benzene ring substituted with a reactive primary oxygenated functional group or can be hydrolysed to such a functional group
- the major pathway of metabolic detoxification involves hydrolysis and oxidation to yield the corresponding benzoic acid derivate which is excreted either as the free acid or the glycine conjugate
 - they show a consistent pattern of toxicity in both short- and long- term studies and
- they exhibit no evidence of genotoxicity in standardised batteries of in vitro and in vivo assays.

The benzyl derivatives are rapidly absorbed through the gut, metabolised primarily in the liver, and excreted in the urine as glycine conjugates of benzoic acid derivatives.

In general, aromatic esters are hydrolysed in vivo through the catalytic activity of carboxylesterases, the most important of which are the A-esterases. Hydrolysis of benzyl and benzoate esters to yield corresponding alcohols and carboxylic acids and hydrolysis of acetals to yield benzaldehyde and simple alcohols have been reported in several experiments.

The alcohols and aldehydes are rapidly oxidised to benzoic acid while benzoate esters are hydrolysed to benzoic acid. Flavor and Extract Manufacturers Association (FEMA)

The aryl alkyl alcohol (AAA) fragrance ingredients are a diverse group of chemical structures with similar metabolic and toxicity profiles.

The AAA fragrances demonstrate low acute and subchronic dermal and oral toxicity.

At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin. The potential for eye irritation is minimal.

With the exception of benzyl alcohol and to a lesser extent phenethyl and 2-phenoxyethyl AAA alcohols, human sensitization studies, diagnostic patch tests and human induction studies, indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitization is low.

NOAELs for maternal and developmental toxicity are far in excess of current human exposure levels.

No carcinogenicity in rats or mice was observed in 2-year chronic testing of benzyl alcohol or a-methylbenzyl alcohol; the latter did induce species and gender-specific renal adenomas in male rats at the high dose. There was no to little genotoxicity, mutagenicity, or clastogenicity in the mutagenicity in vitro bacterial assays, and in vitro mammalian cell assays. All in vivo micronucleus assays were negative.

It is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients. The Research Institute for Fragrance Materials (RIFM) Expert Panel

TRIMETHYLHEXAMETHYLENE DIAMINE

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

SV100 Epoxy Hardener Part B & ISOPHORONE DIAMINE & TRIMETHYLHEXAMETHYLENE DIAMINE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

SV100 Epoxy Hardener Part B & ISOPHORONE DIAMINE & BENZYL ALCOHOL & TRIMETHYLHEXAMETHYLENE DIAMINE

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

SV100 Epoxy Hardener Part B & BENZYL ALCOHOL

Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur.

Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes.

Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with

Version No: **4.8.1.1** Page **17** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis. Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a sufficient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management measure.

Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation. Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear.

Axillae Bilateral axillary (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy.

Face Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic.

Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this, Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported. The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen.

Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified.. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol, geranium oil.

Photo-reactions Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon. Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Phototoxic reactions still occur but are rare.

General/respiratory: Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis.

Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. A prohapten is a chemical that itself is non- or low-sensitising but that is transformed into a hapten in the skin (bioactivation) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and bioactivation can often give the same product (geraniol is an example). Some chemicals might act by all three pathways.

Prohantens

Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens.

In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal.

The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I

Version No: **4.8.1.1** Page **18** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavincontaining monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases,

UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin . These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity.

QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha,beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation

For isophorone diamine

Based on a limited skin irritation study with rabbits and rats, isophorone diamine is deemed to be a strong irritant (duration of the exposure not reported) and corrosive after repeated application. Isophorone diamine is corrosive to the eyes of rabbits when tested according to OECD TG 405. Isophorone diamine was found to induce dermal sensitisation when tested according to OECD TG 406 in guinea pigs. From a number of publications there is evidence that frequent occupational exposure to isophorone diamine may lead to the development of allergic contact dermatitis in humans. No definite conclusion can be currently drawn on respiratory sensitisation.

From two 14-day inhalative exposure studies with rats no NOAEL could be determined. At the first study's LOAEL of 18 mg/m3, degeneration/necrosis in the olfactory epithelium of the nose were observed. Trachea, larynx and lungs were affected at 200 mg/m3 and above (degeneration/necrosis, hyperplasia, squamous metaplasia). At the LOAEL of the follow-up study, i.e. at 2.2 mg/m3, reversible minimal to mild degeneration of respiratory nasal mucosa in the anterior dorsal nose was observed. In a subchronic drinking water study according to OECD TG 408, the administration of 150 mg/kg bw/day led to reduced absolute and relative kidney weights in male and female rats (histopathology being indicative for tubular nephrosis), while 59 mg/kg bw/day (males) and 62 mg/kg bw/day (females) were determined as a NOAEL.

Isophorone diamine was not mutagenic in bacteria and mammalian cell systems *in vitro* (Ames test according to Directive 84/449/EEC B.14 (1984) and HPRT test according to OECD TG 476 (1984)). It did not induce chromosomal aberrations in CHO cells *in vitro* in a test performed in accordance with OECD TG 473. *In vivo* mouse micronucleus tests (one performed according to OECD TG 474 (1983) for the induction of micronucleated polychromatic erythrocytes were clearly negative. From all *in vitro* and *in vivo* tests performed there is no evidence that isophorone diamine has a mutagenic or clastogenic potential.

No studies have been performed on the toxicity of isophorone diamine to reproduction.

Data from an oral 90-day study in rats according to OECD TG 408 did not reveal any adverse effects on the male and female reproductive organs.

Isophorone diamine did not show any teratogenic or embryofoetotoxic effects in a gavage study with rats performed in accordance with OECD TG 414 (2001) up to and including the highest tested dose level of 250 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day, effects at 250 mg/kg bw/day were reduced food consumption and reduced body weight gain. The NOAEL for developmental toxicity is 250 mg/kg bw/day.

While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects.

- Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis.
- Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient.

Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion. **Inhalation:**

Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs. Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker exposure.

Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains.

Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney, blood, and central nervous system disorders in laboratory animal studies.

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic

SV100 Epoxy Hardener Part B & ISOPHORONE DIAMINE

SV100 Epoxy Hardener Part B & TRIMETHYLHEXAMETHYLENE DIAMINE

Version No: **4.8.1.1** Page **19** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease.

Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema.

Skin Contact:

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient.

Eve Contact:

Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations.

Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.)

Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling.

The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases.

Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation.

Ingestion:

The oral toxicity of amine catalysts varies from moderately to very toxic.

Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract. Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs.

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death.

Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry

ISOPHORONE DIAMINE & TRIMETHYLHEXAMETHYLENE

DIAMINE

The material may produce respiratory tract irritation. Symptoms of pulmonary irritation may include coughing, wheezing, laryngitis, shortness of breath, headache, nausea, and a burning sensation.

Unlike most organs, the lung can respond to a chemical insult or a chemical agent, by first removing or neutralising the irritant and then repairing the damage (inflammation of the lungs may be a consequence).

The repair process (which initially developed to protect mammalian lungs from foreign matter and antigens) may, however, cause further damage to the lungs (fibrosis for example) when activated by hazardous chemicals. Often, this results in an impairment of gas exchange, the primary function of the lungs. Therefore prolonged exposure to respiratory irritants may cause sustained breathing difficulties.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	~
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend: X − Data either not available or does not fill the criteria for classification

✓ – Data available to make classification

SECTION 12 Ecological information

Toxicity

0)/400 For each Hamiltonian	Endpoint	Test Duration (hr)	Species	Value	Source
SV100 Epoxy Hardener Part B	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
isophorone diamine	BCF	1008	Fish	<0.3	7

Version No: **4.8.1.1** Page **20** of **24** Issue Date: **22/04/2021**Print Date: **22/04/2021**Print Date: **22/04/2021**

SV100 Epoxy Hardener Part B

	LC50	96	Fish	70mg/l	1
	NOEC(ECx)	72	Algae or other aquatic plants	1.5mg/l	1
	EC50	72	Algae or other aquatic plants	37mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	48	Crustacea	230mg/l	2
	LC50	96	Fish	10mg/l	2
benzyl alcohol	EC50(ECx)	5	Algae or other aquatic plants	Algae or other aquatic plants >0.442mg/L	
	EC50	72	Algae or other aquatic plants	500mg/l	2
	EC50	96	Algae or other aquatic plants	76.828mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
trimethylhexamethylene diamine	EC50	72	Algae or other aquatic plants	29.5mg/l	1
ulanime	EC10(ECx)	72	Algae or other aquatic plants	16.3mg/l	1
Legend:	3. EPIWIN Suite	e V3.12 (QSAR) - Aquatic Toxicit	e ECHA Registered Substances - Ecotoxicologi y Data (Estimated) 4. US EPA, Ecotox database IITE (Japan) - Bioconcentration Data 7. METI (e - Aquatic Toxicity Da	ta 5.

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For isophorone diamine:

Persistence/Biodegradability: 42% (DOC, OECD 303A) *8.0% (DOC, Die away test -9/69/EEC) *

* [Morton]

Environmental fate:

Isophorone diamine has a melting point of 10 C, is miscible with water and has a vapour pressure of 0.02 hPa at 20 C. The measured log Kow is 0.99 (23 C). The pKa of approximately 10.4 characterises the substance as a moderate base.

According to a Mackay Level I model calculation, the main target compartment for isophorone diamine will be water (99.8 %), followed by sediment and soil (both 0.08 %). It has to be considered that under environmental relevant pH conditions the substance is available as cation and therefore the prediction of the environmental distribution using the data for the uncharged molecule is not appropriate. The calculated Henry's law constant of 0.000446 Pa m3/mol indicates very low volatility from surface waters.

Dissociation in aqueous solution will further reduce the volatility. With a calculated Koc of 340.4 l/kg, the sorption potential to soil or sediment organic matter is expected to be moderate. However, as in the environment the substance is available as cation, binding to the matrix of soils with high capacities for cation exchange (e.g. clay) cannot be excluded.

In the atmosphere, isophorone diamine is rapidly removed by reaction with hydroxyl radicals with a calculated half-life of 0.2 days. In water, it is expected to hydrolyse at a low rate under environmental conditions (t1/2 > 1 year at 25 C). Photolytic degradation in surface waters is expected to be of minor importance due to the chemical structure. Isophorone diamine is not readily biodegradable (OECD 301A: 8 % after 28 days). However, in a simulation test with activated, non-adapted sludge, a degradation of 42 % (including a minor, though not negligible contribution by adsorption to sludge) was measured after a contact time of 6 hrs. The log Kow value of 0.99 indicates a low bioaccumulation potential.

Ecotoxicity:

Fish LC50 (96 h): Leuciscus idus 110 mg/l; (48 h): 185 mg/l

Daphnia magna EC50 (48 h): 23 mg/l Daphnae LC50 (24 h): 42 mg/l

Algae ErC50 (72 h): Scenedesmus subspicatus >50 mg/l; EbC50 (72 h): 37 mg/l

Pseudomonas putida EC10 (16 h): 1120 mg/l

Long term aquatic toxicity data are available for two trophic levels: Daphnia magna: 21-d NOEC = 3.0 mg/l;

Scenedesmus subspicatus: 72-h ErC10 = 11 mg/l; 72-h EbC10 = 3.0 mg/l

An assessment factor of 50 was applied to the lowest of two long-term results covering two trophic levels. The PNEC of 0.06 mg/l for aquatic organisms was calculated from the NOEC for *Daphnia* = 3.0 mg/l.

Prevent, by any means available, spillage from entering drains or water courses.

For benzyl alcohol: log Kow : 1.1 Koc : <5

Henry's atm m3 /mol: 3.91E-07 BOD 5: 1.55-1.6,33-62%

COD: 96% ThOD: 2.519 BCF: 4

Bioaccumulation : not significant Anaerobic effects : significant degradation

Effects on algae and plankton: inhibits degradation of glucose

Degradation Biological: significant processes Abiotic: RxnOH*,no photochem

Ecotoxicity

Fish LC50 (48 h): fathead minnow 770 mg/l; (72 h): 480 mg/l; (96 h) 460 mg/l

Version No: 4.8.1.1 Issue Date: 22/04/2021 Page 21 of 24 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

Fish LC50 (96 h) fathead minnow 10 ppm, bluegill sunfish 15 ppm; tidewater silverside fish 15 ppm

Products of Biodegradation: Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
isophorone diamine	HIGH	HIGH
benzyl alcohol	LOW	LOW
trimethylhexamethylene diamine	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
isophorone diamine	LOW (BCF = 3.4)
benzyl alcohol	LOW (LogKOW = 1.1)
trimethylhexamethylene diamine	LOW (LogKOW = 1.6347)

Mobility in soil

Ingredient	Mobility
isophorone diamine	LOW (KOC = 340.4)
benzyl alcohol	LOW (KOC = 15.66)
trimethylhexamethylene diamine	LOW (KOC = 1101)

SECTION 13 Disposal considerations

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- ▶ Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ► Treat and neutralise at an approved treatment plant.
- ▶ Treatment should involve: Neutralisation with suitable dilute acid followed by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Page 22 of 24 Version No: 4.8.1.1 Issue Date: 22/04/2021 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

Labels Required

Land transport (ADG)

UN number	2735		
UN proper shipping name	AMINES, LIQUID, CO	RROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine)	
Transport hazard class(es)	Class 8 Subrisk Not Appli	icable	
Packing group	III		
Environmental hazard	Not Applicable	Not Applicable	
Special precautions for user	Special provisions	223 274	
user	Limited quantity	5 L	

Air transport (ICAO-IATA / DGR)

UN number	2735			
UN proper shipping name	Amines, liquid, corrosive, n.o.s. * (contains isophorone diamine); Polyamines, liquid, corrosive, n.o.s. * (contains isophorone diamine)			
Transport hazard class(es)	ICAO/IATA Class	8		
	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	8L		
Packing group	III			
Environmental hazard	Not Applicable			
	Special provisions		A3 A803	
	Cargo Only Packing Instructions		856	
Special precautions for user	Cargo Only Maximum Qty / Pack		60 L	
	Passenger and Cargo Packing Instructions		852	
	Passenger and Cargo Maximum Qty / Pack		5 L	
	Passenger and Cargo	Limited Quantity Packing Instructions	Y841	
	Passenger and Cargo	Limited Maximum Qty / Pack	1 L	

Sea transport (IMDG-Code / GGVSee)

UN number	2735	
UN proper shipping name	AMINES, LIQUID, CO	ORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains isophorone diamine)
Transport hazard class(es)	IMDG Class 8 IMDG Subrisk N	Not Applicable
Packing group	III	
Environmental hazard	Not Applicable	
Special precautions for user	EMS Number Special provisions Limited Quantities	F-A , S-B 223 274 5 L

Transport in bulk according to Annex II of MARPOL and the IBC code

Version No: 4.8.1.1 Page 23 of 24 Issue Date: 22/04/2021 Print Date: 22/04/2021

SV100 Epoxy Hardener Part B

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
isophorone diamine	Not Available
benzyl alcohol	Not Available
trimethylhexamethylene diamine	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
isophorone diamine	Not Available
benzyl alcohol	Not Available
trimethylhexamethylene diamine	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

isophorone diamine is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

benzyl alcohol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Australian Inventory of Industrial Chemicals (AIIC)

trimethylhexamethylene diamine is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (benzyl alcohol; trimethylhexamethylene diamine)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	Yes		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - FBEPH	Yes		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)		

SECTION 16 Other information

04/2021

Version No: 4.8.1.1 Page **24** of **24** Issue Date: 22/04/2021

SV100 Epoxy Hardener Part B

Print Date: 22/04/2021

Initial Date

10/08/2015

SDS Version Summary

Version	Date of Update	Sections Updated
3.8.1.1	20/04/2021	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Chronic Health, Classification, Environmental, Exposure Standard, Fire Fighter (fire/explosion hazard), Handling Procedure, Personal Protection (eye), Physical Properties, Spills (major), Spills (minor), Storage (suitable container), Supplier Information

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.