

Mould Release

On-Crete Australia Pty Ltd

Version No: 1.8
Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **21/04/2020**Print Date: **21/04/2020**L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Mould Release
Chemical Name	distillates, petroleum, light, hydrotreated
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Mould Release for pattern stamp concrete.
--------------------------	---

Details of the supplier of the safety data sheet

Registered company name	On-Crete Australia Pty Ltd	Oncrete New Zealand Pty Ltd
Address	4/489 Scottsdale Drive Queensland 4227 Australia	15A Vega Place, Rosedale Auckland 0632 New Zealand
Telephone	+617 5593 6884 +649 930 8829	
Fax	Not Available Not Available	
Website	Website www.on-crete.com.au www.oncrete.co.nz	
Email	sales@on-crete.com.au	sales@oncrete.co.nz

Emergency telephone number

Association / Organisation	On-Crete Australia Pty Ltd	Oncrete New Zealand Pty Ltd
Emergency telephone numbers	1300 292 504	0800 120 854
Other emergency telephone numbers	+613 6121 9073	+649 553 8356

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

 $\label{local_combust_equation} \mbox{COMBUSTIBLE LIQUID, regulated for storage purposes only}$

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	1		
Toxicity	1		0 = Minimum
Body Contact	2		1 = Low
Reactivity	0		2 = Moderate 3 = High
Chronic	0		4 = Extreme

Poisons Schedule	Not Applicable	
Classification [1]	Specific target organ toxicity - single exposure Category 3 (narcotic effects), Flammable Liquid Category 4, Skin Corrosion/Irritation Category 2, Aspiration Hazard Category 1	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Issue Date: 21/04/2020 Print Date: 21/04/2020

Label elements

Hazard pictogram(s)

SIGNAL WORD

DANGER

Hazard statement(s)

H336	May cause drowsiness or dizziness.	
H227	Combustible liquid.	
H315	Causes skin irritation.	
H304	May be fatal if swallowed and enters airways.	

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.	
P271	P271 Use only outdoors or in a well-ventilated area.	
P261	P261 Avoid breathing mist/vapours/spray.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.	
P321	Specific treatment (see advice on this label).	
P331	Do NOT induce vomiting.	
P362	Take off contaminated clothing and wash before reuse.	
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.	
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P302+P352	IF ON SKIN: Wash with plenty of water and soap.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P332+P313	If skin irritation occurs: Get medical advice/attention.	

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64742-47-8	>60	distillates, petroleum, light, hydrotreated
Not Available	Balance	Ingredients determined to be Non-Hazardous

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- ► Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- ► Seek medical attention without delay; if pain persists or recurs seek medical attention.

Version No: **1.8** Page **3** of **16** Issue Date: **21/04/2020**Print Date: **21/04/2020**

Mould Release

	► Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.		
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.		
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. 		
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. 		

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage)
 is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- ► Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility

 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

▶ Alert Fire Brigade and tell them location and nature of hazard.

- ▶ Wear full body protective clothing with breathing apparatus.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- ► DO NOT approach containers suspected to be hot.
- ► Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

Fire Fighting

WARNING: In use may form flammable/ explosive vapour-air mixtures.

Combustible.

- ▶ Slight fire hazard when exposed to heat or flame.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.

Version No: 1.8 Page 4 of 16 Issue Date: 21/04/2020 Print Date: 21/04/2020

Mould Release

► On combustion, may emit toxic fumes of carbon monoxide (CO). ► May emit acrid smoke. • Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. **HAZCHEM** Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

Minor Spills

See section 12

Methods and material for containment and cleaning up

▶ Remove all ignition sources.

- ► Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- ► Contain and absorb spill with sand, earth, inert material or vermiculite.
- ▶ Place in a suitable, labelled container for waste disposal.

Chemical Class: aliphatic hydrocarbons

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS	
-----------------	------	-------------	------------	-------------	--

LAND SPILL - SMALL

cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
wood fiber - pillow	2	throw	pitchfork	R, P, DGC, RT
treated wood fibre- pillow	2	throw	pitchfork	DGC, RT
sorbent clay - particulate	3	shovel	shovel	R, I, P
foamed glass - pillow	3	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

Major Spills

polypropylene - mat	4	throw	skiploader	DGC, RT
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
sorbent clay - particulate	3	blower	skiploader	R, I, P
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
cross-linked polymer - particulate	1	blower	skiploader	R,W, SS

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainv

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 Moderate hazard.

- ▶ Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.

Version No: 1.8 Page 5 of 16 Issue Date: 21/04/2020

Mould Release

Print Date: 21/04/2020

- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ▶ No smoking, naked lights or ignition sources.
- ► Increase ventilation.
- ▶ Stop leak if safe to do so.
- ► Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- · Absorb remaining product with sand, earth or vermiculite.
- · Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

- ► Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

- Store in original containers.
- Keep containers securely sealed.
- ▶ No smoking, naked lights or ignition sources.
- ▶ Store in a cool, dry, well-ventilated area.
- ▶ Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Glass container is suitable for laboratory quantities
- Metal can or drum
 - Packaging as recommended by manufacturer.
 - ▶ Check all containers are clearly labelled and free from leaks.

Storage incompatibility

Avoid reaction with oxidising agents

- Must not be stored together
- May be stored together with specific preventions
- May be stored together

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Mould Release

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	distillates, petroleum, light, hydrotreated	Oil mist, refined mineral	5 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
distillates, petroleum, light, hydrotreated	Mineral oil, heavy or light; (paraffin oil; Deobase, deodorized; heavy paraffinic; heavy naphthenic); distillates; includes 64741-53-3, 64741-88-4, 8042-47-5, 8012-95-1; 64742-54-7	140 mg/m3	1,500 mg/m3	8,900 mg/m3

Ingredient	Original IDLH	Revised IDLH
distillates, petroleum, light, hydrotreated	2,500 mg/m3	Not Available

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- ▶ cause inflammation
- ▶ cause increased susceptibility to other irritants and infectious agents
- ▶ lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

for kerosene CAS 8008-20-6

TLV TWA: 100 mg/m3 as total hydrocarbon vapour Skin A3

OEL TWA: 14 ppm, 100 mg/m3 [NIOSH, 1985]

REL TWA: 150 ppm [Shell]
CEL TWA: 300 ppm, 900 mg/m3
(CEL = Chemwatch Exposure Limit)

for petroleum distillates:

CEL TWA: 500 ppm, 2000 mg/m3 (compare OSHA TWA)

(CEL = Chemwatch Exposure Limit)

NOTE H: Special requirements exist in relation to classification and labelling of this substance. This note applies to certain coal- and oil -derived substances and to certain entries for groups of substances in Annex VI. European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

	Type of Contaminant:	Air Speed:
		0.25-0.5 m/s
	solvent, vapours, degreasing etc., evaporating from tank (in still air).	(50-100 f/min)

Version No: 1.8 Page 7 of 16 Issue Date: 21/04/2020 Print Date: 21/04/2020

Mould Release

aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, 0.5-1 m/s (100-200 welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) f/min.) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge 1-2.5 m/s (200-500 (active generation into zone of rapid air motion) f/min.)

2.5-10 m/s

(500-2000 f/min.)

Within each range the appropriate value depends on:

into zone of very high rapid air motion).

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eye and face protection

- Safety glasses with side shields.
- ▶ Chemical goggles.
- ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection

Version No: 1.8 Page 8 of 16 Issue Date: 21/04/2020 Print Date: 21/04/2020

Mould Release

	should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- · Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- Fig. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- ▶ Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Liquid	Relative density (Water = 1)	0.79
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	61	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Combustible.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available

Version No: 1.8 Page 9 of 16 Issue Date: 21/04/2020 Print Date: 21/04/2020

Mould Release

Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and

Inhalation hazard is increased at higher temperatures.

Inhaled

lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central

nervous system depression - characterised by headache and dizziness, increased reaction time, fatique and loss of co-ordination

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult

Accidental ingestion of the material may be damaging to the health of the individual.

breathing, and bluish coloured skin (cyanosis).

Ingestion

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur. Light aromatic hydrocarbons produce a warm, sharp, tingling sensation on contact with taste buds and may anaesthetise the tongue. Aspiration into the lungs may produce coughing, gagging and a chemical pneumonitis with pulmonary oedema and haemorrhage.

Version No: 1.8

Page 10 of 16

Mould Release

Issue Date: **21/04/2020**Print Date: **21/04/2020**

Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Skin Contact
The material may accentuate any pre-existing dermatitis condition

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives .

Eye

Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the corneal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association between

Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties

routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have

Chronic

Animal studies:

been unable to confirm this finding.

No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar

naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human.

Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Mould Release

TOXICITY	IRRITATION
Not Available	Not Available

Version No: **1.8** Page **11** of **16** Issue Date: **21/04/2020**Print Date: **21/04/2020**Print Date: **21/04/2020**

Mould Release

distillates, petroleum, light, hydrotreated	TOXICITY dermal (rat) LD50: >2000 mg/kg ^[1] Oral (rat) LD50: >5000 mg/kg ^[2]	IRRITATION Eye: no adverse effect observed (not irritating) ^[1] Skin: adverse effect observed (irritating) ^[1]
Legend:	Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED

No significant acute toxicological data identified in literature search.

Studies indicate that normal, branched and cyclic paraffins are absorbed from the mammalian gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent that iso- or cycloparaffins.

The major classes of hydrocarbons have been shown to be well absorbed by the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with dietary lipids. The dependence of hydrocarbon absorption on concomitant triglyceride digestion and absorption, is known as the "hydrocarbon continuum hypothesis", and asserts that a series of solubilising phases in the intestinal lumen, created by dietary triglycerides and their digestion products, afford hydrocarbons a route to the lipid phase of the intestinal absorptive cell (enterocyte) membrane. While some hydrocarbons may traverse the mucosal epithelium unmetabolised and appear as solutes in lipoprotein particles in intestinal lymph, there is evidence that most hydrocarbons partially separate from nutrient lipids and undergo metabolic transformation in the enterocyte. The enterocyte may play a major role in determining the proportion of an absorbed hydrocarbon that, by escaping initial biotransformation, becomes available for deposition in its unchanged form in peripheral tissues such as adipose tissue, or in the liver.

For "kerosenes"

Acute toxicity: Oral LD50s for three kerosenes (Jet A, CAS No. 8008-20-6 and CAS No. 64742-81-0) ranged from > 2 to >20 g/kg. The dermal LD50s of the same three kerosenes were all >2.0 g/kg. Inhalation LC50 values in Sprague-Dawley rats for straight run kerosene (CAS No. 8008-20-6) and hydrodesulfurised kerosene (CAS No. 64742-81-0) were reported to be > 5 and > 5.2 mg/l, respectively. No mortalities in rats were reported in rats when exposed for eight hours to saturated vapor of deodorised kerosene (probably a desulfurised kerosene). Six hour exposures of cats to the same material produced an LC50 of >6.4 mg/l

When tested in rabbits for skin irritation, straight run kerosene (CAS No. 8008-20-6) produced "moderate" to "severe" irritation. Six additional skin irritation studies on a range of kerosenes produced "mild" to "severe" irritation.

An eye irritation in rabbits of straight run kerosene (CAS No. 8008-20-6) produced Draize scores of 0.7 and 2.0 (unwashed and washed eyes) at 1 hour. By 24 hours, the Draize scores had returned to zero. Eye irritation studies have also been reported for hydrodesulfurized kerosene and jet fuel. These materials produced more irritation in the unwashed eyes at 1 hour than had the straight run kerosene. The eye irritation persisted longer than that seen with straight run kerosene, but by day 7 had resolved. Straight run kerosene (CAS No. 8008-20-6), Jet A, and hydrodesulfurized kerosene (CAS No. 64742-81-0) have not produced sensitisation when tested in guinea pigs

Mould Release & DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED

Repeat-Dose toxicity: Multiple repeat-dose toxicity studies have been reported on a variety of kerosenes or jet fuels. When applied dermally, kerosenes and jet fuels have been shown to produce dermal and systemic effects

Dose levels of 200, 1000 and 2000 mg/kg of a straight run kerosene (CAS No. 8008-20-6) were applied undiluted to the skin of male and female New Zealand white rabbits. The test material was applied 3x/week for 28 days. One male and one female in the 2000 mg/kg dose group found dead on days 10 and 24 respectively were thought to be treatment-related. Clinical signs that were considered to be treatment-related included: thinness, nasal discharge, lethargy, soiled anal area, anal discharge, wheezing. The high dose group appeared to have a treatment related mean body weight loss when compared to controls. Dose-related skin irritation was observed, ranging from "slight" to "moderate" in the low and high dose groups, respectively. Other treatment-related dermal findings included cracked, flaky and/or leathery skin, crusts and/or hair loss. Reductions in RBC, haemoglobin and haematocrit were seen in the male dose groups. There were no treatment related effects on a variety of clinical chemistry values. Absolute and relative weights for a number of organs were normal, with the following exceptions that were judged to be

- increased relative heart weights for the mid- and high- dose males and females,
- \bullet increased absolute and relative spleen weights in treated females, and
- differences in absolute and relative adrenal weights in both male and female treated animals (considered to be stress-related and therefore, indirectly related to treatment).

Gross necropsy findings were confined largely to the skin. Enlarged spleens were seen in the female groups. Microscopic examination of tissues taken at necropsy found proliferative inflammatory changes in the treated skin of all male and female animals in the high dose group. These changes were, in the majority of animals, accompanied by an increase in granulopoiesis of the bone marrow. Four of six high dose males had testicular changes (multifocal or diffuse tubular hypoplasia) that were considered by the study authors to be secondary to the skin and/or weight changes.

In a different study, hydrodesulfurised kerosene was tested in a thirteen-week dermal study using Sprague-Dawley rats. Test material was applied 5x/week to the skin of male and female rats at dose levels of 165, 330 and 495 mg/kg. Aside from skin irritation at the site of application, there were no treatment-related clinical signs during the study. Screening of all animals using a functional observation battery (FOB) did not find any substance-related effects. Opthalomological examination of all animals also found no treatment-related effects. There were no treatment-related effects on growth rates, hematological or clinical chemical values, or absolute or relative organ weights. Microscopic examination of tissues from animals surviving to termination found no treatment-related changes, with the exception of a minimal degree of a proliferative and inflammatory changes in the skin. A hydrodesulfurised middle distillate (CAS no. 64742-80-9) has also been tested in a four week inhalation study. In the study, Sprague-Dawley rats were exposed to a nominal concentration of 25mg/m3 kerosene. Exposures were for approximately 6

Version No: 1.8 Page 12 of 16 Issue Date: 21/04/2020 Print Date: 21/04/2020

Mould Release

hr/day, five days each week for four consecutive weeks. There were no treatment-related effects on clinical condition, growth rate, absolute or relative organ weights, or any of the hematological or clinical chemistry determinations. Microscopic examination found no treatment-related changes observed in any tissues.

Carcinogenicity: In addition to the repeat-dose studies discussed above, a number of dermal carcinogenicity studies have been performed on kerosenes or jet fuels. Following the discovery that hydrodesulfurised (HDS) kerosene caused skin tumors in lifetime mouse skin painting studies, the role of dermal irritation in tumor formation was extensively studied. HDS kerosene proved to be a mouse skin tumor promoter rather than initiator, and this promotion required prolonged dermal irritation . If the equivalent dose of kerosene was applied to the skin in manner that did not cause significant skin irritation (eg, dilution with a mineral oil) no skin tumors occurred . Dermal bioavailability studies in mice confirmed that the reduced irritation seen with samples in mineral oil was not due to decreased skin penetration. The effect of chronic acanthosis on the dermal tumorigenicity of a hydrodesulfurised kerosene was studied and the author concluded that hyperplasia was essential for tumor promotion. However, the author also concluded that subacute inflammation did not appear to be a significant factor

A sample of a hydrodesulfurised kerosene has been tested in an initiation-promotion assay in male CD-1 mice. Animal survivals were not effected by exposure to the kerosene. The study's authors concluded that the kerosene was not an initiator but it did show tumor promoting activity.

In-Vitro (Genotoxicity): The potential in vitro genotoxicities of kerosene and jet fuel have been evaluated in a variety of studies. Standard Ames assays on two kerosene samples and a sample of Jet A produced negative results with/without activation . Modified Ames assays on four kerosenes also produced negative results (with/without activation) except for one positive assay that occurred with activation . The testing of five kerosene and jet fuel samples in mouse lymphoma assays produced a mixture of negative and positive results . Hydrodesulfurized kerosene tested in a sister chromatid exchange assay produced negative results (with/without activation)

In-Vivo Genotoxicity: Multiple in vivo genotoxicity studies have been done on a variety of kerosene-based materials. Four samples of kerosene were negative and a sample of Jet A was positive in in vivo bone marrow cytogenetic tests in Sprague-Dawley rats . One of the kerosene samples produced a positive response in male mice and negative results in females when tested in a sister chromatid exchange assay. Both deodorised kerosene and Jet A samples produced negative results in dominant lethal assays. The kerosene was administered to both mice and rats intraperitoneally, while the jet fuel was administered only to mice via inhalation.

Reproductive/Developmental Toxicity Either 0, 20, 40 or 60% (v/v) kerosene in mineral oil was applied to the skin of the rats. The dose per body weight equivalents were 0, 165, 330 and 494 mg/kg. Test material was applied daily, 7 days/week from 14 days premating through 20 days of gestation. There were no treatment-related effects on mortality and no clinical signs of toxicity were observed. There were no compound-related effects on any of the reproductive/developmental parameters. The authors concluded that the no observable effect level (NOEL) for reproductive/developmental toxicity of HDS kerosene under the treatment conditions of the study was 494 mg/kg/day.

Developmental toxicity screening studies on a kerosene and a sample of Jet A have been reported . There were no compoundrelated deaths in either study. While kerosene produced no clinical signs, the jet fuel produced a dose-related eye irritation (or infection). The signs of irritation lasted from 2 to 8 days with most animals showing signs for 3 days. Neither of the test materials had an effect on body weights or food consumption. Examination of offspring at delivery did not reveal any treatment-related abnormalities, soft tissue changes or skeletal abnormalities. The sex ratio of the fetuses was also unaffected by treatment with either of the compounds.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	~	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	~
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	~

Legend: ★ - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Mould Release	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
distillates, petroleum, light, hydrotreated	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	>1-mg/L	2
	EC50	48	Crustacea	>1-mg/L	2
	EC50	72	Algae or other aquatic plants	>1-mg/L	2
	NOEC	3072	Fish	=1mg/L	1
		•	•		•

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8.

Version No: **1.8** Page **13** of **16** Issue Date: **21/04/2020**Print Date: **21/04/2020**Print Date: **21/04/2020**

Mould Release

Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

- redrowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- ▶ lethal effects on fish by coating gill surfaces, preventing respiration
- ▶ asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- ▶ adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For kerosene:

For kerosene-range refinery streams ("kerosene"):

Kerosene is the name for the lighter end of a group of petroleum streams known as the middle distillates.

Kerosene may be obtained either from the distillation of crude oil under atmospheric pressure (straight-run kerosene) or from catalytic, thermal or steam cracking of heavier petroleum streams (cracked kerosene). The kerosenes, are further treated by a variety of processes (including hydrogenation) to remove or reduce the level of sulfur, nitrogen or olefinic materials. The precise composition of any particular kerosene will depend on the crude oil from which it was derived and on the refinery processes used for its production.

The streams are complex mixtures of paraffinic, isoparaffinic, naphthenic (cycloparaffinic) and aromatic (mainly alkylbenzene) hydrocarbons ranging in carbon number from C5-25 (mainly C9-16) and boil in the range 145 to 300 C. Olefins constitute less than 5% of the mixtures, by volume, and polycyclic aromatic hydrocarbons (PAHs) (3-7 fused rings) content is typically very low. Jet fuels (e.g., Jet A, JP-8, etc.) are included because they are composed almost entirely of two of these streams straight run kerosene (CAS No. 8008-20-6) or hydrodesulfurised kerosene (CAS No. 64742-81-0)

Environmental Fate

Terrestrial fate:: If released to soil, kerosene is expected to biodegrade under both aerobic and anaerobic conditions. Kerosene is a mixture of petroleum hydrocarbons, chiefly C10-C16 alkanes, and a typical analysis includes the identification of n-dodecane, alkyl benzene derivatives, naphthalene, and tetrahydronaphthalenes. Soil adsorption coefficients for these representative classes of compounds ranging from 1500 to 17,000 obtained from estimated log octanol/water partition coefficients of 3.3 to 5.25 indicate that some components of kerosene may display low mobility and some will be essentially immobile in soil. The vapour pressure of kerosene, 0.48 mm Hg indicates that it may rapidly volatilise from dry soil to the atmosphere although its expected strong adsorption to soil may significantly attenuate the rate of this process.

Aquatic fate: If released to water, kerosene is expected to biodegrade under both aerobic and anaerobic conditions. Bioconcentration factors for components of kerosene were estimated to be 190 to 5800 (based on estimated log octanol/water partition coefficients of 3.3 to 5.25) indicating that some components of kerosene may significantly bioconcentrate in fish and aquatic organisms. Soil adsorption coefficients for kerosene ranging from 1500 to 17,000 indicate that it may strongly adsorb to sediment and suspended organic matter. The estimated half-life for volatilisation of kerosene from a model river 1 m deep flowing at 1 m/sec with a wind speed of 3 m/sec which does not take into account adsorptive processes is 3-6 hrs. The estimated half-life for volatilisation of kerosene from a model lake, which accounts for adsorptive processes, is >130 days.

Atmospheric fate If released to the atmosphere, kerosene may undergo oxidation by a gas-phase reaction with photochemically produced hydroxyl radicals. Estimated rate constants for the oxidation of these representative classes of compounds ranging from 1.2-2.2x10-11 cm/molec-sec at 25 deg C translates to an atmospheric half-life for kerosene of 2-3.4 days using an average atmospheric hydroxyl radical concentration of 5x10+5 molec/cu-cm.

The stability of kerosene in soils as affected by volatilization was determined in a laboratory column experiment by following the losses in the total concentration and the change in composition of the residuals in a dune sand, a loamy sand, and a silty loam soil during a 50 day period. Seven major compounds ranging between C9 and C15 were selected from a large variety of hydrocarbons forming kerosene and their presence in the remaining petroleum product was determined. The change in composition of kerosene during the experimental period was determined by gas chromatography and related to the seven major compounds selected. The experimental conditions air-dry soil and no subsequent addition of water excluded both biodegradative and leaching losses. The losses of kerosene in air-dried soil columns during the 50-day experimental period and the changes in the composition of the remaining residues due to volatilization are reported. The volatilization of all the components determined was greater from the dune sand and loamy sand soils than from the silty loam soil. It was assumed that the reason for this behavior was that the dune sand and the loamy sand soils contain a greater proportion of large pores (> 4.5 um) than the silty loam soil, even though the total porosity of the loamy sand and the silty loam is similar. In all the soils in the experiment, the components with a high carbon number formed the main fraction of the kerosene residues after 50 days of incubation.

Voltatilisation in the air phase and saturated mass flow of kerosene in the three sands ((fine, medium and coarse) were studied in the laboratory under controlled conditions. Volatilisation was the major physico-chemical process affecting the fate of kerosene in the inert porous medium. During volatilization the liquid kerosene changed its composition by gradually losing its light components (C9-C13), and the viscosity of the remaining liquid kerosene increased. The increase in viscosity led to a decrease in the infiltration rate, for example, by about 20% when the viscosity increased

Ecotoxicity:

Data for various kerosene streams is available. Kerosenes and jet fuels are moderately to acutely toxicity to aquatic organisms. All studies used exposures to water accommodated fractions (WAFs) of the process streams Each of the different streams exhibited similar toxicity to rainbow trout (*Oncorhynchus mykiss*, 96-hour LC 50 values of 18 - 25 mg/L); likewise, toxicity to the alga *Selenastrum capricornutum*, with 96-hour growth rate EC50 values of 5.0 - 6.2 mg/L and biomass inhibition EC50 values of 5.9 - 11 mg/L, did not vary greatly among the streams. There was considerable variation in the measured toxicity of the category member (CAS No. 64742-81-0) to daphnids (*Daphnia magna*) when evaluated in different tests; in the test using daily renewal of freshly-prepared WAF, the 48-hr EC50 was estimated at 1.4 mg/L, while in the test where solution was not renewed it was estimated at between 40 and 89 mg/L. In spite of daily renewal, a sample of sweetened kerosene (CAS No. 91770-15-9) exhibited considerably less toxicity than the hydrodesulfurised and hydrocracked materials tested in the same laboratory, indicating the difference in that measurement is due to the nature of the sample rather than variations in the testing approach. For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are

Version No: **1.8** Page **14** of **16** Issue Date: **21/04/2020**Print Date: **21/04/2020**Print Date: **21/04/2020**

Mould Release

complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials.

Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons. Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes;
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics:
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil

Bioaccumulation

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet;

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish

Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L. was determined

The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L.

Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

Mould Release

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient	Bioaccumulation
distillates, petroleum, light, hydrotreated	LOW (BCF = 159)

Mobility in soil

Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

COMBUSTIBLE LIQUID	COMBUSTIBLE LIQUID, regulated for storage purposes only	
Marine Pollutant	NO	
HAZCHEM	Not Applicable	

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

DISTILLATES, PETROLEUM, LIGHT, HYDROTREATED IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Version No: 1.8 Page **16** of **16** Issue Date: 21/04/2020 Print Date: 21/04/2020

Mould Release

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 1: Carcinogenic to humans

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (distillates, petroleum, light, hydrotreated)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	21/04/2020
Initial Date	09/03/2020

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Powered by AuthorITe, from Chemwatch.