

# **Lincoln Sentry Silicone Spray 300g NET Aerosol**

Chemwatch Hazard Alert Code: 4

Issue Date: 08/07/2022 Print Date: 08/07/2022 S.GHS.AUS.EN

**QUIN GLOBAL ASIA PACIFIC** 

Version No: 1.2 Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

# SECTION 1 Identification of the substance / mixture and of the company / undertaking

| Product Identifier            |                                                                                                                     |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Product name                  | Lincoln Sentry Silicone Spray 300g NET Aerosol                                                                      |
| Synonyms                      | Not Available                                                                                                       |
| Proper shipping name          | AEROSOLS (contains LPG (liquefied petroleum gas), polydimethylsiloxane and naphtha petroleum, light, hydrotreated.) |
| Other means of identification | Not Available                                                                                                       |

# Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Lubricant

# Details of the supplier of the safety data sheet

|                         | •                                                  |
|-------------------------|----------------------------------------------------|
| Registered company name | QUIN GLOBAL ASIA PACIFIC                           |
| Address                 | 63 Hincksman Street Queanbeyan, NSW 2620 Australia |
| Telephone               | +61 2 6175 0574                                    |
| Fax                     | Not Available                                      |
| Website                 | www.quinglobal.com                                 |
| Email                   | sales@quinglobal.com.au                            |

# Emergency telephone number

| Association / Organisation        | CHEMWATCH EMERGENCY RESPONSE |  |  |
|-----------------------------------|------------------------------|--|--|
| Emergency telephone numbers       | +61 1800 951 288             |  |  |
| Other emergency telephone numbers | +61 3 9573 3188              |  |  |

Once connected and if the message is not in your prefered language then please dial 01

# **SECTION 2 Hazards identification**

# Classification of the substance or mixture

| Poisons Schedule   | Not Applicable                                                                                                                                                                                                                                                                           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification [1] | Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 2, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2B, Aspiration Hazard Category 1, Aerosols Category 1 |
| Legend:            | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI                                                                                                                                                      |

#### Label elements

Hazard pictogram(s)









Signal word

Danger

### Hazard statement(s)

| H336 | May cause drowsiness or dizziness.               |
|------|--------------------------------------------------|
| H411 | Toxic to aquatic life with long lasting effects. |

Version No: 1.2 Page 2 of 15 Issue Date: 08/07/2022 Print Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

| AUH044    | Risk of explosion if heated under confinement.                           |  |  |  |  |
|-----------|--------------------------------------------------------------------------|--|--|--|--|
| H315      | Causes skin irritation.                                                  |  |  |  |  |
| H320      | Causes eye irritation.                                                   |  |  |  |  |
| H304      | May be fatal if swallowed and enters airways.                            |  |  |  |  |
| H222+H229 | Extremely flammable aerosol. Pressurized container: may burst if heated. |  |  |  |  |

# Precautionary statement(s) Prevention

| P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. |  |  |  |  |
|------|------------------------------------------------------------------------------------------------|--|--|--|--|
| P211 | Do not spray on an open flame or other ignition source.                                        |  |  |  |  |
| P251 | Do not pierce or burn, even after use.                                                         |  |  |  |  |
| P271 | Use only outdoors or in a well-ventilated area.                                                |  |  |  |  |
| P261 | Avoid breathing gas                                                                            |  |  |  |  |
| P273 | Avoid release to the environment.                                                              |  |  |  |  |
| P280 | Wear protective gloves and protective clothing.                                                |  |  |  |  |
| P264 | Wash all exposed external body areas thoroughly after handling.                                |  |  |  |  |

#### Precautionary statement(s) Response

|                | ·                                                                                                                                |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| P301+P310      | IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.                                                     |
| P331           | Do NOT induce vomiting.                                                                                                          |
| P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P312           | Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.                                                            |
| P337+P313      | If eye irritation persists: Get medical advice/attention.                                                                        |
| P391           | Collect spillage.                                                                                                                |
| P302+P352      | IF ON SKIN: Wash with plenty of water and soap.                                                                                  |
| P304+P340      | IF INHALED: Remove person to fresh air and keep comfortable for breathing.                                                       |
| P332+P313      | If skin irritation occurs: Get medical advice/attention.                                                                         |
| P362+P364      | Take off contaminated clothing and wash it before reuse.                                                                         |

# Precautionary statement(s) Storage

| P405      | Store locked up.                                                             |  |  |
|-----------|------------------------------------------------------------------------------|--|--|
| P410+P412 | Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. |  |  |
| P403+P233 | Store in a well-ventilated place. Keep container tightly closed.             |  |  |

# Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

# **SECTION 3 Composition / information on ingredients**

# **Substances**

See section below for composition of Mixtures

# **Mixtures**

| CAS No      | %[weight]                                                                                                                                                                                           | Name                                    |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| 63148-62-9  | 5-10                                                                                                                                                                                                | polydimethylsiloxane                    |  |  |  |
| 64742-49-0. | 50-75                                                                                                                                                                                               | naphtha petroleum, light, hydrotreated. |  |  |  |
| 68476-85-7. | 10-30                                                                                                                                                                                               | LPG (liquefied petroleum gas)           |  |  |  |
| Legend:     | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available |                                         |  |  |  |

# **SECTION 4 First aid measures**

# Description of first aid measures

If aerosols come in contact with the eyes:

# **Eye Contact**

- Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.
- Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

# Skin Contact

If solids or aerosol mists are deposited upon the skin:

- Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream.
- ► DO NOT use solvents
- Seek medical attention in the event of irritation.

Version No: **1.2** Page **3** of **15** Issue Date: **08/07/2022** 

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: **08/07/2022** 

# Inhalation

Ingestion

If aerosols, fumes or combustion products are inhaled:

- Remove to fresh air.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- ► Transport to hospital, or doctor.

#### If swallowed do **NOT** induce vomiting.

- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- ► Seek medical advice.
- Avoid giving milk or oils.
- Avoid giving alcohol.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

#### Indication of any immediate medical attention and special treatment needed

For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent assignation.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary.
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode,individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

Following acute or short term repeated exposures to n-hexane:

- Large quantities of n-hexane are expired by the lungs after vapour exposure (50-60%). Humans exposed to 100 ppm demonstrate an n-hexane biological half life of 2 hours.
- Finitial attention should be directed towards evaluation and support of respiration. Cardiac dysrhythmias are a potential complication.

#### INGESTION:

lpecac syrup should be considered for ingestion of pure hexane exceeding 2-3ml/kg. Extreme caution must be taken to avoid aspiration since small amounts of n-hexane intratracheally, produce a severe chemical pneumonitis.

[Ellenhorn and Barceloux: Medical Toxicology]

BIOLOGICAL EXPOSURE INDEX - BEI

BEIs represent the levels of determinants which are most likely to be observed in specimens collected in a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the Exposure Standard (ES or TLV).

Determinant Index Sampling Time Comments
1. 2,5-hexanedione in urine 5 mg/gm creatinine End of shift NS
2. n-Hexane in end-exhaled air SQ

NS: Non-specific determinant; Metabolite observed following exposure to other materials.

SQ: Semi-quantitative determinant; Interpretation may be ambiguous - should be used as a screening test or confirmatory test.

# **SECTION 5 Firefighting measures**

# **Extinguishing media**

SMALL FIRE:

► Water spray, dry chemical or CO2

LARGE FIRE:

► Water spray or fog

# Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

# Advice for firefighters

| Fire Fighting         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fire/Explosion Hazard | carbon dioxide (CO2) other pyrolysis products typical of burning organic material.  Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.  May emit clouds of acrid smoke BEWARE: Empty solvent, paint, lacquer and flammable liquid drums present a severe explosion hazard if cut by flame torch or welded. Even when thoroughly cleaned or reconditioned the drum seams may retain sufficient solvent to generate an explosive atmosphere in the drum.  WARNING: Aerosol containers may present pressure related hazards. |
| HAZCHEM               | Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# **SECTION 6 Accidental release measures**

#### Personal precautions, protective equipment and emergency procedures

See section 8

# **Environmental precautions**

Version No: **1.2** Page **4** of **15** Issue Date: **08/07/2022** 

# Lincoln Sentry Silicone Spray 300g NET Aerosol

See section 12

# Methods and material for containment and cleaning up

Minor Spills

**Major Spills** 

Environmental hazard - contain spillage.

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ▶ Wear protective clothing, impervious gloves and safety glasses
- Shut off all possible sources of ignition and increase ventilation.
- ▶ Wine ur
- If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.

Environmental hazard - contain spillage.

- Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- ▶ Prevent, by any means available, spillage from entering drains or water courses
- ▶ No smoking, naked lights or ignition sources.
- Increase ventilation.
- ▶ Stop leak if safe to do so.
- Water spray or fog may be used to disperse / absorb vapour.
- ▶ Absorb or cover spill with sand, earth, inert materials or vermiculite.
- ▶ If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.
- Collect residues and seal in labelled drums for disposal

Personal Protective Equipment advice is contained in Section 8 of the SDS.

#### SECTION 7 Handling and storage

#### Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

Radon and its radioactive decay products are hazardous if inhaled or ingested

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- ► DO NOT incinerate or puncture aerosol cans
- ► DO NOT spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

# Other information

Suitable container

Safe handling

# Conditions for safe storage, including any incompatibilities

# For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
- Aerosol dispenser
- Check that containers are clearly labelled.

Storage incompatibility

Traces of benzene, a carcinogen, may form when silicones are heated in air above 230 degrees C. Concentrated acids and bases cause degradation of polymer. Boiling water may soften and weaken material. Low molecular weight alkanes:

- May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
   Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- Are incompatible with nitronium tetrahuoroborate(1-), halogens and internalogen
   may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Print Date: 08/07/2022

Version No: **1.2** Page **5** of **15** Issue Date: **08/07/2022** 

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: 08/07/2022

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

#### Propane:

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- I liquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours
- Avoid reaction with oxidising agents

#### SECTION 8 Exposure controls / personal protection

#### **Control parameters**

# Occupational Exposure Limits (OEL)

#### **INGREDIENT DATA**

| Source                       | Ingredient               | Material name            | TWA             | STEL      | Peak      | Notes     |
|------------------------------|--------------------------|--------------------------|-----------------|-----------|-----------|-----------|
| Australia Exposure Standards | LPG (liquefied petroleum | LPG (liquified petroleum | 1000 ppm / 1800 | Not       | Not       | Not       |
|                              | gas)                     | gas)                     | mg/m3           | Available | Available | Available |

#### **Emergency Limits**

| Ingredient                              | TEEL-1      | TEEL-2       | TEEL-3       |
|-----------------------------------------|-------------|--------------|--------------|
| polydimethylsiloxane                    | 65 mg/m3    | 720 mg/m3    | 4,300 mg/m3  |
| naphtha petroleum, light, hydrotreated. | 1,000 mg/m3 | 11,000 mg/m3 | 66,000 mg/m3 |
| LPG (liquefied petroleum gas)           | 65,000 ppm  | 2.30E+05 ppm | 4.00E+05 ppm |

| Ingredient                              | Original IDLH | Revised IDLH  |
|-----------------------------------------|---------------|---------------|
| polydimethylsiloxane                    | Not Available | Not Available |
| naphtha petroleum, light, hydrotreated. | Not Available | Not Available |
| LPG (liquefied petroleum gas)           | 2,000 ppm     | Not Available |

#### Occupational Exposure Banding

| Ingredient                              | Occupational Exposure Band Rating                                                                                                                                                                                                                                                                                                                                 | Occupational Exposure Band Limit |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| naphtha petroleum, light, hydrotreated. | E                                                                                                                                                                                                                                                                                                                                                                 | ≤ 0.1 ppm                        |
| Notes:                                  | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health |                                  |

# **Exposure controls**

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

# Appropriate engineering controls

| Type of Contaminant:                                                                                            | Speed:                     |
|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| aerosols, (released at low velocity into zone of active generation)                                             | 0.5-1 m/s                  |
| direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) |

Within each range the appropriate value depends on:

| Lower end of the range                                     | Upper end of the range           |
|------------------------------------------------------------|----------------------------------|
| Room air currents minimal or favourable to capture         | 1: Disturbing room air currents  |
| 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity |
| 3: Intermittent, low production.                           | 3: High production, heavy use    |
| 4: Large hood or large air mass in motion                  | 4: Small hood-local control only |

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical

Version No: 1.2 Page 6 of 15 Issue Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: 08/07/2022

Personal protection







factors of 10 or more when extraction systems are installed or used.





considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by

No special equipment for minor exposure i.e. when handling small quantities.

OTHERWISE: For potentially moderate or heavy exposures:

- Safety glasses with side shields.
- NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.
- Safety glasses with side shields.
- Chemical goggles

#### Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

#### Skin protection

See Hand protection below

#### ► OTHERWISE:

- ► For potentially moderate exposures:

- Wear general protective gloves, eg. light weight rubber gloves.

No special equipment needed when handling small quantities.

No special equipment needed when handling small quantities.

- Hands/feet protection For potentially heavy exposures:
  - Wear chemical protective gloves, eg. PVC. and safety footwear.
  - Insulated gloves:

NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid.

#### **Body protection**

See Other protection below

# Other protection

- OTHERWISE: Overalls.
  - Skin cleansing cream.
- Eyewash unit.
- Do not spray on hot surfaces.

# Respiratory protection

Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

| Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator |
|------------------------------------|----------------------|----------------------|------------------------|
| up to 5 x ES                       | Air-line*            | AX-2 P2              | AX-PAPR-2 P2 ^         |
| up to 10 x ES                      | -                    | AX-3 P2              | -                      |
| 10+ x ES                           | -                    | Air-line**           | -                      |

- \* Continuous Flow; \*\* Continuous-flow or positive pressure demand
- ^ Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- ▶ Generally not applicable

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

| Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face Respirator | Full-Face Respirator |
|------------------------------------|--------------------------------------------------------------------|----------------------|----------------------|
| up to 10                           | 1000                                                               | AX-AUS / Class 1     | -                    |
| up to 50                           | 1000                                                               | -                    | AX-AUS / Class 1     |
| up to 50                           | 5000                                                               | Airline *            | -                    |
| up to 100                          | 5000                                                               | -                    | AX-2                 |
| up to 100                          | 10000                                                              | -                    | AX-3                 |
| 100+                               |                                                                    | -                    | Airline**            |

<sup>\*\* -</sup> Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

Version No: **1.2** Page **7** of **15** Issue Date: **08/07/2022** 

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: 08/07/2022

#### **SECTION 9 Physical and chemical properties**

**Appearance** 

#### Information on basic physical and chemical properties

Low Boiling Point Naphtha (LBPNs) are a group of complex petroleum mixtures that generally serve as blending constituents in gasoline or are intermediate products of distillation or extraction processes, which subsequently undergo further refining. Final fuel products usually consist of a mixture of LBPNs as well as other high-quality hydrocarbons that have been isolated during processing at refinery or upgrader facilities. The compositions of LBPNs vary depending on the source of crude oil or bitumen.

The petroleum refinery stream used in the blending of gasoline is referred to as naphthas. The chemicals exist in closed systems and are typically consumed or undergo further processing or blending before leaving the site under a different CAS number. The final gasoline products are usually a combination of low boiling point petroleum naphthas and other hydrocarbons produced from petroleum refineries.

The chemicals in this category are unknown or variable compositions, complex reaction products and biological materials (UVCBs) containing aliphatic and aromatic hydrocarbons (e.g. alkanes, cycloalkanes, aromatics, alkenes etc.) primarily in the C4-C12 range. The chemicals in this category are volatile liquids at standard temperatures and pressures with boiling point ranges covering -20 to 230 deg C

The chemical classes common to all naphthas are paraffinic, olefinic, naphthenic, and aromatic hydrocarbons. Chemicals in this category include, for example, C4-C6 aliphatics, C7-C12 isoalkanes, or a full spectrum of C4-C12 aliphatics and aromatics. The chemical compositions of these hydrocarbons depend on both the original source of the chemical and on the refinery process (e.g. distillation, alkylation, cracking, hydrotreatment, solvent extraction, desulfurisation etc.) used during manufacture.

Low boiling point petroleum naphthas may contain benzene (CAS No. 71-43-2) at an approximate concentration of 1 %, with benzene concentrations measured at up to 20 % in naphtha reformates

| Physical state                               | Liquified Gas     | Relative density (Water = 1)            | 0.662         |
|----------------------------------------------|-------------------|-----------------------------------------|---------------|
| Odour                                        | Not Available     | Partition coefficient n-octanol / water | Not Available |
| Odour threshold                              | Not Available     | Auto-ignition temperature (°C)          | Not Available |
| pH (as supplied)                             | Not Available     | Decomposition temperature (°C)          | Not Available |
| Melting point / freezing point (°C)          | -97               | Viscosity (cSt)                         | Not Available |
| Initial boiling point and boiling range (°C) | 60                | Molecular weight (g/mol)                | Not Available |
| Flash point (°C)                             | -104              | Taste                                   | Not Available |
| Evaporation rate                             | Not Available     | Explosive properties                    | Not Available |
| Flammability                                 | HIGHLY FLAMMABLE. | Oxidising properties                    | Not Available |
| Upper Explosive Limit (%)                    | Not Available     | Surface Tension (dyn/cm or mN/m)        | Not Available |
| Lower Explosive Limit (%)                    | Not Available     | Volatile Component (%vol)               | Not Available |
| Vapour pressure (kPa)                        | 46.86             | Gas group                               | Not Available |
| Solubility in water                          | Immiscible        | pH as a solution (Not<br>Available%)    | Not Available |
| Vapour density (Air = 1)                     | 2.93              | VOC g/L                                 | 662.00        |

# **SECTION 10 Stability and reactivity**

| Reactivity                         | See section 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chemical stability                 | <ul> <li>Elevated temperatures.</li> <li>Presence of open flame.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> <li>Silicone fluids are stable under normal storage conditions.</li> <li>Hazardous polymerisation will not occur.</li> <li>At temperatures &gt; 150 C, silicones can slowly react with the oxygen in air.</li> <li>When heated &gt; 300 C, silicones can slowly depolymerise to volatile siloxanes whether or not air is present.</li> </ul> |
| Possibility of hazardous reactions | See section 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Conditions to avoid                | See section 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Incompatible materials             | See section 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hazardous decomposition products   | See section 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# **SECTION 11 Toxicological information**

# Information on toxicological effects

Inhaled

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational

Version No: 1.2 Page 8 of 15 Issue Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: 08/07/2022

setting.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

Inhalation hazard is increased at higher temperatures.

Inhaling high concentrations of mixed hydrocarbons can cause narcosis, with nausea, vomiting and lightheadedness. Low molecular weight (C2-C12) hydrocarbons can irritate mucous membranes and cause incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and stupor.

Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal

Nerve damage can be caused by some non-ring hydrocarbons. Symptoms are temporary, and include weakness, tremors, increased saliva, some convulsions, excessive tears with discolouration and inco-ordination lasting up to 24 hours.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Accidental ingestion of the material may be damaging to the health of the individual.

Isoparaffinic hydrocarbons cause temporary lethargy, weakness, inco-ordination and diarrhoea.

# Ingestion

Ingestion of petroleum hydrocarbons can irritate the pharynx, oesophagus, stomach and small intestine, and cause swellings and ulcers of the mucous. Symptoms include a burning mouth and throat; larger amounts can cause nausea and vomiting, narcosis, weakness, dizziness, slow and shallow breathing, abdominal swelling, unconsciousness and convulsions.

Not normally a hazard due to physical form of product.

Considered an unlikely route of entry in commercial/industrial environments

Chronic inhalation or skin exposure to n-hexane may cause damage to nerve ends in extremities, e.g. finger, toes with loss of sensation.

This material can cause inflammation of the skin on contact in some persons.

The material may accentuate any pre-existing dermatitis condition

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.

Skin exposure to isoparaffins may produce slight to moderate irritation in animals and humans. Rare sensitisation reactions in humans have occurred.

#### **Skin Contact**

Spray mist may produce discomfort

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The liquid may be able to be mixed with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives.

# Eve

Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Direct eye contact with petroleum hydrocarbons can be painful, and the corneal epithelium may be temporarily damaged. Aromatic species can cause irritation and excessive tear secretion.

The liquid may produce eye discomfort and is capable of causing temporary impairment of vision and/or transient eye inflammation, ulceration Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals. Prolonged eye contact may cause inflammation characterised by a temporary redness of the conjunctiva (similar to windburn).

# Chronic

TOXICITY

TOXICITY

Oral (Rat) LD50; >35000 mg/kg<sup>[2]</sup>

Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility.

Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

Repeated application of mildly hydrotreated oils (principally paraffinic), to mouse skin, induced skin tumours; no tumours were induced with severely hydrotreated oils

# Lincoln Sentry Silicone Spray 300g NET Aerosol

| TOXICITY      | IKKITATION    |
|---------------|---------------|
| Not Available | Not Available |

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

# polydimethylsiloxane

IRRITATION Dermal (rabbit) LD50: >3000 mg/kg<sup>[2]</sup> Eye (rabbit): 100 mg/1h - mild

# naphtha petroleum, light, hydrotreated.

| TOXICITY                                          | IRRITATION                                                      |  |
|---------------------------------------------------|-----------------------------------------------------------------|--|
| Dermal (rabbit) LD50: >1900 mg/kg <sup>[1]</sup>  | Eye: no adverse effect observed (not irritating) <sup>[1]</sup> |  |
| Inhalation(Rat) LC50; >4.42 mg/L4h <sup>[1]</sup> | Skin: adverse effect observed (irritating) <sup>[1]</sup>       |  |
| Oral (Rat) LD50; >2000 mg/kg <sup>[1]</sup>       |                                                                 |  |

IRRITATION

# LPG (liquefied petroleum gas)

| Inhalation(Rat) LC50; 658 mg/l4h <sup>[2]</sup>                     | Not Available                                                       |
|---------------------------------------------------------------------|---------------------------------------------------------------------|
| 1. Value obtained from Europe ECHA Registered Substances - Acute to | ricity 2.* Value obtained from manufacturer's SDS. Unless otherwise |

# **POLYDIMETHYLSILOXANE**

Legend:

No toxic response noted during 90 day subchronic inhalation toxicity studies The no observable effect level is 450 mg/m3. Non-irritating and non-sensitising in human patch test. [Xerox]\*

Siloxanes may impair liver and hormonal function, as well as the lung and kidney. They have not been found to be irritating to the skin and eyes. They may potentially cause cancer (tumours of the womb in females) and may cause impaired fertility or infertility

 Version No: 1.2
 Page 9 of 15
 Issue Date: 08/07/2022

 Print Date: 08/07/2022
 Print Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

LPG (LIQUEFIED PETROLEUM

inhalation of the gas

For Low Boiling Point Naphthas (LBPNs):

#### Acute toxicity

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices.

#### Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies

#### Repeat dose toxicity:

The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values.

Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

#### Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames and mouse lymphoma assays Gasoline exhibited negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay. Mixed results were observed for UDS and the mouse lymphoma assay.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

#### Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect so formation of the substances.

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in

petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans). Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Lincoln Sentry Silicone Spray 300g NET Aerosol & NAPHTHA PETROLEUM, LIGHT, HYDROTREATED. Version No: 1.2 Page 10 of 15 Issue Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: 08/07/2022

Reproductive/ Developmental toxicity:

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation. Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans.

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus.

Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable.

POLYDIMETHYLSILOXANE & NAPHTHA PETROLEUM,

NAPHTHA PETROLEUM, LIGHT, HYDROTREATED.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

NAPHTHA PETROLEUM, LIGHT, HYDROTREATED. & LPG (LIQUEFIED PETROLEUM GAS)

No significant acute toxicological data identified in literature search.

| Acute Toxicity                    | × | Carcinogenicity          | × |
|-----------------------------------|---|--------------------------|---|
| Skin Irritation/Corrosion         | ✓ | Reproductivity           | × |
| Serious Eye Damage/Irritation     | ✓ | STOT - Single Exposure   | ✓ |
| Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × |
| Mutagenicity                      | × | Aspiration Hazard        | ✓ |

Legend:

🗶 – Data either not available or does not fill the criteria for classification

Data available to make classification

# **SECTION 12 Ecological information**

#### Toxicity

|                                                   | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|---------------------------------------------------|------------------|--------------------|-------------------------------|------------------|------------------|
| Lincoln Sentry Silicone Spray<br>300g NET Aerosol | Not<br>Available | Not Available      | Not Available                 | Not<br>Available | Not<br>Available |
|                                                   | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
| polydimethylsiloxane                              | Not<br>Available | Not Available      | Not Available                 | Not<br>Available | Not<br>Available |
|                                                   | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|                                                   | NOEC(ECx)        | 504h               | Crustacea                     | 0.17mg/l         | 2                |
| naphtha petroleum, light,<br>hydrotreated.        | EC50             | 48h                | Crustacea                     | 0.64mg/l         | 2                |
| nyurotreateu.                                     | EC50             | 96h                | Algae or other aquatic plants | 64mg/l           | 2                |
|                                                   | LC50             | 96h                | Fish                          | 4.26mg/l         | 2                |
|                                                   | Endpoint         | Test Duration (hr) | Species                       | Value            | Source           |
|                                                   | EC50(ECx)        | 96h                | Algae or other aquatic plants | 7.71mg/l         | 2                |
| LPG (liquefied petroleum gas)                     | EC50             | 96h                | Algae or other aquatic plants | 7.71mg/l         | 2                |
|                                                   | LC50             | 96h                | Fish                          | 24.11mg/l        | 2                |
|                                                   |                  |                    |                               |                  |                  |

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA,

Version No: **1.2** Page **11** of **15** Issue Date: **08/07/2022** 

#### Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: 08/07/2022

Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Toxic to bees

For Low Boiling Point Naphthas (LBPNs)

**Environmental Fate** 

Based on the available information, all of these LBPNs are likely to have high proportions of C4-C6 hydrocarbons that are considered to be persistent in air, based on criteria defined in the Persistence and Bioaccumulation Regulations of CEPA 1999.

None of the LBPNs considered here contain components that are considered to be bioaccumulative based on criteria in the Persistence and Bioaccumulation Regulations of CEPA 1999. .

Experimental and modelled ecotoxicological data indicate that many of these LBPNs are moderately toxic to aquatic organisms. It is likely that the toxicity observed in experimental studies is due to the presence of mono- and di-aromatic and alkylated aromatic hydrocarbons; however, the lack of data on the proportions of these components makes it impossible to confirm.

Estimates can be derived from analyzing the biodegradation of the components of LBPNs. Aerobic biodegradation data for individual isoalkanes (C9-C12) from an Organisation for Economic Co-operation and Development (OECD) 301F ready biodegradation test indicate that they will be 22% degraded (ultimate biodegradation) over a period of 28 days equates to a degradation half-life of approximately 78 days in water, assuming that degradation follows first-order kinetics.

Numerous researchers have found that the degree of branching in an isoalkane increases its resistance to biodegradation It was reported that C6-C10 components (alkanes, isoalkanes, alkenes, cycloalkanes, one-ring aromatics and two-ring aromatics) in a formulated gasoline had relatively short median half-lives (primary biodegradation)-ranging from 3 to 17 days in freshwater, salt water and sewage effluent it has been hypothesized that primary biodegradation half-lives were shorter for hydrocarbons in a gasoline mix than for individual components, because indigenous micro-organisms degrade hydrocarbons most effectively when they are presented as a mixed suite of hydrocarbon substrates that allows microbes to use intermediates from different pathways to balance their overall metabolism.

Primary degradation half-lifes in water: In modelled data most components of LBPNs undergo ultimate degradation in a period of "weeks" or less, although a time frame of "weeks to months" is indicated for a few of the heavier components ("weeks to months" is equated to a half-life of 37.5 days.

In air, empirical data show that butane, isobutane, pentane and isopentane are persistent with half-lifes ranging from 2-4 days.

The atmosphere would be an important environmental compartment for these LBPNs due to the high volatility of most of the components.

Persistence: In LBPNs, the C4-C6 components are highly persistent based on criteria in the Persistence and Bioaccumulation Regulations of CEPA 1999 (Canada 2000) - they are likely make up a large proportion of the mixture.

Bioaccumulation: A tropical fish (Mugil curema) to naphthalene (a C10 di-aromatic) in water for 96 hours and found rapid uptake with slower depuration. BCFs in muscle were 81 to 567. A whole fish BCF of 145 was calculated for this species.

Bioconcentration: Studies on the bioconcentration potential of many of the representative structures in LBPNs have been conducted in Japan (JNITE 2010). None of the substances considered had a BCF= 5000.

Ecotoxicity:

Experimental aquatic toxicity data were obtained for some of the LBPN whereas others were extrapolated from results for similar types of LBPNs. Moderate toxicity (median lethal loading [LL50] values of 4.5-32 milligrams [mg]/L) was seen with the water-accommodated fractions in shrimp, Daphnia magna, rainbow trout and fathead minnows It is likely that the mono-aromatic and di-aromatic hydrocarbons and alkylated aromatics are largely responsible for the toxicity seen in the tests, as C9-C12 alkanes and isoalkanes are known not to be especially toxic to aquatic organisms Algae appear to be some of the most sensitive organisms to whole products in water; one algal no-observed-adverse-effect level (NOAEL) was below 1 mg/L, although the median effective concentration (EC 50) for growth was 880 mg/L. Empirical tests with water-accommodated fractions of LBPNs did not indicate that the substances tested were highly hazardous to aquatic organisms.

Screening Assessment Petroleum Sector Stream Approach Low Boiling Point Naphthas [Site-restricted]

Environment Canada Health Canada September 2011

http://www.ec.gc.ca/ese-ees/82F527F8-7F64-440F-8E59-A9826242DFF3/LBPNs\_SAR\_EN.pdf

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

- b drowning of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- ▶ lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation.

For Siloxanes

Environmental Fate: Siloxanes are used in cosmetics, wax, polishes, and to a minor extent in several other applications.

Atmospheric Fate: In the presence of nitrate ions, short chain siloxanes are broken down by sunlight to the level of silicate within days. The main source atmospheric siloxane release to the air is via evaporation.

Aquatic Fate: It is well accepted that polydimethylsiloxane fluids become permanent residents of sediment but should not have adverse environmental effects. Silicone fluids are very surface active on surface waters. These substances tend to move into the aquatic compartment attached to textiles, sewage sludge, hair, algae, sediment, etc. Non-evaporating silicone fluids used in cosmetics, wax, polishes, cleaning products and those used in textile applications, (softeners), will, to a large extent, end up in wastewater and be directed to wastewater treatment plants.

Ecotoxicity: Siloxanes are chemically stable which makes them very persistent in the environment, where they are expected to remain for many years. The cyclic siloxanes and small-chain linear siloxanes are will concentrate in the food chain concentrated (long-chained siloxanes have not been assessed). The estimated bioconcentration factors, (BCF), of the small siloxanes range from 340 for HMDS to 40,000 for a phenyl trimethicone. The small phenylated siloxanes may be substances are the most toxic for aquatic organisms. EPA screening criteria indicates that all siloxane s are of high concern as to environmental toxicity and that the phenyl siloxanes are considered very bioaccumulative.

Ecotoxicity: Siloxanes are moderately toxic to fish, including rainbow trout, and sheepshead minnow. These substances are also moderately toxic to Daphnia magna water fleas, and mysid shrimp.

When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound.

However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that

Version No: **1.2** Page **12** of **15** Issue Date: **08/07/2022** 

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Print Date: 08/07/2022

determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes:
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics;
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For n-Hexane: Log Kow: 3.17-3.94; Henry s Law Constant: 1.69 atm-m3 mol; Vapor Pressure: 150 mm Hg @ 25 C; Log Koc: 2.90 to 3.61. BOD 5, (if unstated): 2.21; COD: 0.04; ThOD: 3.52.

Atmospheric Fate: n-Hexane is not expected to be directly broken down by sunlight. The main atmospheric removal mechanism is through reactions with hydroxyl radicals, with an approximant half-life of 2.9 days. The smog-producing potential of n-hexane is very low, compared to other alkanes, or chlorinated VOCs. Hydroxyl ion reactions in the upper troposphere, therefore, are probably the primary mechanisms for n-hexane degradation in the atmosphere.

Terrestrial Fate: Surface evaporation is expected to be the main fate process of this substance in soil. The substance has a moderate ability to sorb to soil particles but, is expected to have low potential for leaching into the lower soil depths. n-Hexane is expected to generally stay near the soil surface and, if not appreciably sorbed into the soil matrix, will eventually evaporate. Exceptions would involve locations with shallow groundwater tables where large spills occur - in such cases, n-hexane would spread out to contaminate a large volume of soil. Once introduced into groundwater, n-hexane may be fairly persistent, since its degradation by water is slow and opportunities for biodegradation may be limited, (due to low oxygen conditions), or, where nutrients, such as nitrogen or phosphorus, are in limited supply. Biological breakdown is probably the most significant degradation mechanism in groundwater. Pseudomonas mendocina bacteria have been shown to break the substance down in groundwater and mixed/pure bacterial cultures can utilize the substance, in the presence of oxygen. The most important biological breakdown process involves the conversion of n-hexane to primary alcohols, aldehydes and, ultimately, into fatty acids. In general, unless the n-hexane is buried at some depth within a soil or sediment, evaporation is generally assumed to occur at a much more rapid rate than chemical or biochemical degradation processes.

Aquatic Fate: The dominant transport process from water is evaporation, with an estimated half-life of <3 hours. For standing bodies of water, a half-life no longer than 6.8 days is estimated. The substance has very low water solubility and is resistant to breakdown by water. Few data exist for the biological breakdown of n-hexane in water, however; this process is not considered to be as rapid as evaporation. N-Hexane may be persistent if released to deep sediment.

Ecotoxicity: This substance is not expected to concentrate/accumulate in aquatic organisms or the food chain. These substances are considered to be the most readily biodegradable fractions in petroleum, particularly when oxygen is present in solution. The substance is moderately toxic to rainbow trout, fathead minnow, bluegill, and Daphnia water fleas.

For Propane: Koc 460. log

Kow 2.36

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water.

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight.

Version No: 1.2 Page 13 of 15 Issue Date: 08/07/2022 Print Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

#### Persistence and degradability

| Ingredient | Persistence: Water/Soil               | Persistence: Air                      |
|------------|---------------------------------------|---------------------------------------|
|            | No Data available for all ingredients | No Data available for all ingredients |

# **Bioaccumulative potential**

| Ingredient | Bioaccumulation                       |  |  |
|------------|---------------------------------------|--|--|
|            | No Data available for all ingredients |  |  |

# Mobility in soil

| Ingredient | Mobility                              |
|------------|---------------------------------------|
|            | No Data available for all ingredients |

# **SECTION 13 Disposal considerations**

#### Waste treatment methods

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Product / Packaging disposal
  - Consult State Land Waste Management Authority for disposal.
  - ▶ Discharge contents of damaged aerosol cans at an approved site.
  - Allow small quantities to evaporate.
  - DO NOT incinerate or puncture aerosol cans.
  - ▶ Bury residues and emptied aerosol cans at an approved site.

# **SECTION 14 Transport information**

#### **Labels Required**



#### **Marine Pollutant**



**HAZCHEM** 

Not Applicable

# Land transport (ADG)

| UN number                    | 1950                 |                                                                                                          |
|------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|
| UN proper shipping name      | AEROSOLS (co         | ontains LPG (liquefied petroleum gas), polydimethylsiloxane and naphtha petroleum, light, hydrotreated.) |
| Transport hazard class(es)   | Class 2<br>Subrisk N | .1 ot Applicable                                                                                         |
| Packing group                | Not Applicable       |                                                                                                          |
| Environmental hazard         | Environmentally      | hazardous                                                                                                |
| Special precautions for user | Special provis       |                                                                                                          |

# Air transport (ICAO-IATA / DGR)

|                              | ·                       |                                      |                                                                      |
|------------------------------|-------------------------|--------------------------------------|----------------------------------------------------------------------|
| UN number                    | 1950                    |                                      |                                                                      |
| UN proper shipping name      | Aerosols, flammable (co | ntains LPG (liquefied petroleum gas) | ), polydimethylsiloxane and naphtha petroleum, light, hydrotreated.) |
| Transport barard aloca(sa)   | ICAO/IATA Class         | 2.1                                  |                                                                      |
| Transport hazard class(es)   | ICAO / IATA Subrisk     | Not Applicable                       |                                                                      |
|                              | ERG Code                | 10L                                  |                                                                      |
| Packing group                | Not Applicable          |                                      |                                                                      |
| Environmental hazard         | Environmentally hazardo | ous                                  |                                                                      |
|                              | Special provisions      |                                      | A145 A167 A802                                                       |
| Special precautions for user | Cargo Only Packing Ir   | structions                           | 203                                                                  |
|                              | Cargo Only Maximum      | Qty / Pack                           | 150 kg                                                               |
|                              |                         |                                      |                                                                      |

Version No: 1.2 Page **14** of **15** Issue Date: 08/07/2022 Print Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

Passenger and Cargo Packing Instructions 203 Passenger and Cargo Maximum Qty / Pack 75 kg Passenger and Cargo Limited Quantity Packing Instructions Y203 Passenger and Cargo Limited Maximum Qty / Pack 30 kg G

# Sea transport (IMDG-Code / GGVSee)

| UN number                    | 1950                                             |                                                                                                  |
|------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|
| UN proper shipping name      | AEROSOLS (contains                               | LPG (liquefied petroleum gas), polydimethylsiloxane and naphtha petroleum, light, hydrotreated.) |
| Transport hazard class(es)   | IMDG Class 2.  IMDG Subrisk No                   | 1ot Applicable                                                                                   |
| Packing group                | Not Applicable                                   |                                                                                                  |
| Environmental hazard         | Marine Pollutant                                 |                                                                                                  |
| Special precautions for user | EMS Number Special provisions Limited Quantities | F-D, S-U 63 190 277 327 344 381 959 1000 ml                                                      |

#### Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

#### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

| Product name                            | Group         |
|-----------------------------------------|---------------|
| polydimethylsiloxane                    | Not Available |
| naphtha petroleum, light, hydrotreated. | Not Available |
| LPG (liquefied petroleum gas)           | Not Available |

#### Transport in bulk in accordance with the ICG Code

| Product name                            | Ship Type     |
|-----------------------------------------|---------------|
| polydimethylsiloxane                    | Not Available |
| naphtha petroleum, light, hydrotreated. | Not Available |
| LPG (liquefied petroleum gas)           | Not Available |

# **SECTION 15 Regulatory information**

# Safety, health and environmental regulations / legislation specific for the substance or mixture

#### polydimethylsiloxane is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 10 / Appendix C

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Schedule 4

# naphtha petroleum, light, hydrotreated. is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

# LPG (liquefied petroleum gas) is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

# **National Inventory Status**

| reactional involvery otacao                        |                                                                                                   |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------|
| National Inventory                                 | Status                                                                                            |
| Australia - AIIC / Australia<br>Non-Industrial Use | Yes                                                                                               |
| Canada - DSL                                       | Yes                                                                                               |
| Canada - NDSL                                      | No (polydimethylsiloxane; naphtha petroleum, light, hydrotreated.; LPG (liquefied petroleum gas)) |
| China - IECSC                                      | Yes                                                                                               |
| Europe - EINEC / ELINCS / NLP                      | No (polydimethylsiloxane)                                                                         |
| Japan - ENCS                                       | No (polydimethylsiloxane; naphtha petroleum, light, hydrotreated.)                                |
| Korea - KECI                                       | Yes                                                                                               |
| New Zealand - NZIoC                                | Yes                                                                                               |
| Philippines - PICCS                                | Yes                                                                                               |
| USA - TSCA                                         | Yes                                                                                               |

Version No: 1.2 Page **15** of **15** Issue Date: 08/07/2022 Print Date: 08/07/2022

# Lincoln Sentry Silicone Spray 300g NET Aerosol

| Legend:        | Yes = All CAS declared ingredients are on the inventory  No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Russia - FBEPH | Yes                                                                                                                                                                                             |  |
| Vietnam - NCI  | Yes                                                                                                                                                                                             |  |
| Mexico - INSQ  | Yes                                                                                                                                                                                             |  |
| Taiwan - TCSI  | Yes                                                                                                                                                                                             |  |

# **SECTION 16 Other information**

| Revision Date | 08/07/2022 |
|---------------|------------|
| Initial Date  | 07/06/2022 |

#### **SDS Version Summary**

**National Inventory** 

| Version | Date of Update | Sections Updated                           |
|---------|----------------|--------------------------------------------|
| 0.2     | 07/07/2022     | Fire Fighter (fire/explosion hazard), Name |

#### Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

#### **Definitions and abbreviations**

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

Status

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.